
Approved for public release� distribution is unlimited

QUALITY NETWORK LOAD INFORMATION IMPROVES
PERFORMANCE OF ADAPTIVE APPLICATIONS

John P Kresho
Captain� United States Marine Corps

B�S�� Cornell Univerity� ����

Submitted in partial ful�llment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September ����

Author�

John P Kresho

Approved by�

Debra Hensgen� Thesis Advisor

Taylor Kidd� Second Reader

Ted Lewis� Chairman
Department of Computer Science

iii

iv

ABSTRACT

The Joint Task Force Reference Architecture requires a Comms Server to aid

client applications in adapting to changing network loads by apprising them of current

and expected loads� The current Comms Server implementation estimates the network

load by sending various sized packets and reporting raw performance statistics to

the client� This implementation presents three problems� ��� clients interpret the

statistics autonomously� ��� statistics are inaccurate due to the instantaneous collection

procedure� and �	� clients also require the state of other resources to make informed

decisions concerning adaptation� Development of a new Comms Server design� which

solves these problems� is needed�

This thesis develops a new Comms Server design and determines� through

simulation� whether providing a more accurate estimate of the load could permit users

of adaptive applications to obtain better performance� Simulations were run using

many di
erent situational parameters� Both the average size of the data successfully

transmitted� and whether an application met its deadline� were recorded�

The results of these simulations show that clients of the existing Comms Server

perform much better because they adapt� but in some cases ��� to 	
� of the mes�

sages do not arrive by their deadline� However� a better design that more accurately

estimates loads could deliver at least ��� of the messages on time�

v

vi

TABLE OF CONTENTS

I� INTRODUCTION �

A� BACKGROUND �

B� MOTIVATION � 	

C� PURPOSE �

D� ORGANIZATION �

II� OVERVIEW OF THE JTF REFERENCE ARCHITECTURE �

A� USER ENVIRONMENT �

B� PRE�SPECIFIED APPLICATIONS LAYER � � � � � � � � � � � �

�� Task Force Sta
 Process Management � � � � � � � � � � � �

�� The Situation Assessment and Planning Module � � � � � �

	� The Coordination� Communication� and Control Module � �

C� GENERIC SERVICES �

D� INFRASTRUCTUREFORCOLLABORATIVEOBJECTMAN�

AGEMENT� COMMUNICATIONS AND COMPUTING � � � � ��

E� SUMMARY �	

III� DESIGN OF THE VTC APPLICATION � � � � � � � � � � � � � ��

A� TASKTOOL ��

B� WORKFLOW SERVER ��

�� JTF ATD Object De�nition � � � � � � � � � � � � � � � � ��

�� Objects of WorkFlow Server � � � � � � � � � � � � � � � � ��

	� TaskTool to WorkFlow �

�� Use of the Trigger Server � � � � � � � � � � � � � � � � � � �

C� BASIC STRUCTURE OF OUR APPLICATION � � � � � � � � ��

D� WISE USE OF BANDWIDTH � � � � � � � � � � � � � � � � � � ��

IV� OVERVIEW AND TESTING OF THE COMMUNICATIONS

SERVER ��

vii

A� OVERALL CONCEPT OF THE COMMUNICATIONS SERVER 		

B� OUREARLY EXPERIENCEWITH THECOMMUNICATIONS

SERVER � 	�

�� Testing the Functionality � � � � � � � � � � � � � � � � � � 	�

C� CONCLUSIONS FROM THE TESTING � � � � � � � � � � � � � ��

V� SIMULATION EXPERIMENTS ��

A� ADAPTATION STRATEGIES � � � � � � � � � � � � � � � � � � ��

B� ASSUMPTIONS ��

C� SIMULATION PARAMETERS � � � � � � � � � � � � � � � � � � �

�� Communications Server Bandwidth Prediction Values � � ��

�� Random Seeds Used ��

D� RESULTS ��

�� The Need for Adaptation � � � � � � � � � � � � � � � � � � �	

�� The E
ect of Varying Weights � � � � � � � � � � � � � � � �	

	� Strategy � vs� Strategy ��

�� Determining How Accurate Server Estimates Should Be � ��

E� CONCLUSIONS �

VI� MATHEMATICAL FORMULATION OF THE PROBLEM � � ��

A� ADAPTIVEAPPLICATIONSNEED TOKNOWABOUTALL

RESOURCES ��

B� THE FORMAL MODEL �

VII� PROPOSED ARCHITECTURE SOLUTION � � � � � � � � � � � ��

A� OVERVIEW OF OUR ARCHITECTURE � � � � � � � � � � � � ��

B� THE CLIENT LIBRARY ��

C� RESOURCE STATUS SERVER � � � � � � � � � � � � � � � � � � �

D� RESOURCE REQUIREMENT DATABASE � � � � � � � � � � � ��

E� THE SCHEDULING SERVER � � � � � � � � � � � � � � � � � � ��

F� PRIORITY MODELS AND ECONOMIC MODELS � � � � � � �	

viii

VIII� SUMMARY � 	�

A� SUMMARY OF OUR EARLY EXPERIENCES � � � � � � � � � ��

B� SIMULATIONS DETERMINING SERVER ACCURACY � � � ��

C� A PROPOSED ARCHITECTURE TO SUPPORT ADAPTIVE

APPLICATIONS ��

D� CONCLUSIONS AND FUTURE WORK � � � � � � � � � � � � � ��

APPENDIX A� C

 CODE FOR THE VTCAGENT � � � � � � � � � 	�

APPENDIX B� DIFFICULTIES EXPERIENCED WHILE ACCESS�

ING THE COMMUNICATIONS SERVER � � � � � � � � � � � � ��

APPENDIX C� C

 CODE FOR FIRST SET OF FILE TRANSFER

TESTS ��

APPENDIX D� C

 CODE FOR SECOND SET OF FILE TRANS�

FER TESTS ���

APPENDIX E� C

 CODE FOR COMM SERVER STATISTIC RE�

PORTING ���

APPENDIX F� ADDITIONAL SIMULATION RESULTS � � � � � � ���

APPENDIX G� LIST OF SYMBOLS AND FUNCTIONS � � � � � � ���

APPENDIX H� RESERVATION PROTOCOLS FOR REAL�TIME

DATA ���

�� BACKGROUND ���

�� BASICS OF ENSURING TIMELY DELIVERY � � � � � � � � � ���

	� REAL�TIME TRANSPORT PROTOCOL �RTP� � � � � � � � � ���

�� HEIDELBERG TRANSPORT SYSTEM �HEITS� � � � � � � � � ���

a� Types of Media Scaling ���

�� INTERNET STREAM PROTOCOL �ST�II� � � � � � � � � � � � ���

a� Establishing a Stream ���

b� Adding Participants to Existing Group � � � � � � � � � � ��	

�� RESOURCE RESERVATION PROTOCOL �RSVP� � � � � � � ���

ix

a� RSVP Stream Establishment � � � � � � � � � � � � � � � � ���

b� Adding a Participant using RSVP � � � � � � � � � � � � � ���

�� DISCUSSION ���

�� CONCLUSIONS ���

LIST OF REFERENCES ���

INITIAL DISTRIBUTION LIST ���

x

LIST OF FIGURES

�� JTF context for employment� �

�� Four Levels of the JTF Reference Architecture� � � � � � � � � � � �

	� JTF ATD Reference Architecture User Environment Example� � �

�� Example of a web represented by the Web Server� � � � � � � � � ��

�� Screen Shot of the TaskTool� ��

�� Screen Shot of NewTask for the TaskTool� � � � � � � � � � � � � ��

�� Inheritance diagram of Work�ow Server Objects� � � � � � � � � � ��

�� Example of a trigger� ��

�� Initial steps when TaskTool is started� � � � � � � � � � � � � � � � ��

�
� Finding VTC Taskers and creating session names� � � � � � � � � 	

��� Creation of status �le and distribution of attachments� � � � � � � 	

��� Error detection using the status �le� � � � � � � � � � � � � � � � � 	�

�	� A set of � �les transferred repetitively � times� � � � � � � � � � � 	�

��� A set of � �les transferred repetitively � times with additional

tra�c on the network� �

��� Continuous transfer of � �le between � machines� � � � � � � � � � ��

��� Continuous transfer of � �le for two sets of machines� � � � � � � �	

��� Experimental space using the parameters of interarrival times�

percentage of adaptive clients� and accuracy of bandwidth estimates� ��

��� Average size of adaptive messages received for an interarrival

time of � seconds and mean delta bandwidth prediction of ��

Kbits� ��

��� Average size of adaptive messages received for a mean interar�

rival time of �� seconds and mean delta bandwidth prediction of

��
 Kbits� ��

xi

�
� Average size of adaptive messages received for an interarrival

time of �
 seconds and mean delta bandwidth prediction of ��

Kbits� ��

��� Percentage of adaptive messages not received by deadline when

using Strategy � and �

� of messages are adaptive� � � � � � � ��

��� Percentage of adaptive messages not received by deadline using

Strategy � and ����� of messages are adaptive� � � � � � � � � � ��

�	� Percentage of adaptive messages not received by deadline using

Strategy � and �

� of messages are adaptive� � � � � � � � � � � �

��� Percentage of adaptive messages not received by deadline using

Strategy � and ����� of messages are adaptive� � � � � � � � � � ��

��� Average size of successful adaptive messages using Strategy �

when �

� of the messages are adaptive and the mean interar�

rival time is �� seconds� ��

��� Average size of successful adaptive messages using Strategy �

when �

� of the messages are adaptive and the mean interar�

rival times are � and 	 seconds� � � � � � � � � � � � � � � � � � � �	

��� Average size of successful adaptive messages using Strategy �

when ����� of the messages are adaptive and the mean interar�

rival time is �
 seconds� ��

��� Average size of successful adaptive messages using Strategy �

when ����� of the messages are adaptive and the mean interar�

rival times are � and 	 seconds� � � � � � � � � � � � � � � � � � � ��

��� Measuring transfer times with di
erent loads on the computers� � ��

	
� Mapping of mathematical terms to an application� � � � � � � � � ��

	�� Overview of proposed architecture� � � � � � � � � � � � � � � � � ��

	�� Resource Status Server receiving QueryStatus�� call� � � � � � � ��

		� Resource server receiving UpdateServer�� call� � � � � � � � � � ��

xii

	�� Using an economic model with our priority model� � � � � � � � � ��

	�� Percentage of adaptive messages not received by deadline when

using Strategy � and �

� of messages are adaptive� � � � � � � ���

	�� Percentage of adaptive messages not received by deadline when

using Strategy � and ����� of messages are adaptive� � � � � � � ���

	�� Percentage of adaptive messages not received by deadline when

using Strategy � and �

� of messages are adaptive� � � � � � � ��	

	�� Percentage of adaptive messages not received by deadline when

using Strategy �� and ����� of messages are adaptive� � � � � � � ���

	�� Average size of successful adaptive messages using Strategy �

when �

� of the messages are adaptive and the mean interar�

rival time is �
 seconds� ���

�
� Average size of successful adaptive messages using Strategy �

when �

� of the messages are adaptive and the mean interar�

rival time is �� seconds� ���

��� Average size of successful adaptive messages using Strategy �

when �

� of the messages are adaptive and the mean interar�

rival times are � and 	 seconds� � � � � � � � � � � � � � � � � � � ���

��� Average size of successful adaptive messages using Strategy �

when �

� of the messages are adaptive and the mean interar�

rival time is �
 seconds� ���

�	� Average size of successful adaptive messages using Strategy �

when �

� of the messages are adaptive and the mean interar�

rival time is �� seconds� ���

��� Average size of successful adaptive messages using Strategy �

when �

� of the messages are adaptive and the mean interar�

rival times are � and 	 seconds� � � � � � � � � � � � � � � � � � � �	

xiii

��� Average size of successful adaptive messages using Strategy �

when ����� of the messages are adaptive and the mean interar�

rival time is �
 seconds� �	�

��� Average size of successful adaptive messages using Strategy �

when ����� of the messages are adaptive and the mean interar�

rival time is �� seconds� �	�

��� Average size of successful adaptive messages using Strategy �

when ����� of the messages are adaptive and the mean interar�

rival times are � and 	 seconds� � � � � � � � � � � � � � � � � � � �		

��� Average size of successful adaptive messages using Strategy �

when ����� of the messages are adaptive and the mean interar�

rival time is �� seconds� �	�

��� Average size of successful adaptive messages using Strategy �

when ����� of the messages are adaptive and the mean interar�

rival times are � and 	 seconds� � � � � � � � � � � � � � � � � � � �	�

�
� Average size of successful adaptive messages using Strategy �

when �

� of the messages are adaptive and the mean interar�

rival time is �
 seconds� �	�

��� Average size of successful adaptive messages using Strategy �

when �

� of the messages are adaptive and the mean interar�

rival times are � and 	 seconds� � � � � � � � � � � � � � � � � � � �	�

��� Average size of successful adaptive messages using Strategy �

when �

� of the messages are adaptive and the mean interar�

rival time is �
 seconds� �	�

�	� Average size of successful adaptive messages using Strategy �

when �

� of the messages are adaptive and the mean interar�

rival time is �� seconds� �	�

xiv

��� Average size of successful adaptive messages using Strategy �

when ����� of the messages are adaptive and the mean interar�

rival time is �� seconds� ��

��� Average size of successful adaptive messages using Strategy �

when ����� of the messages are adaptive and the mean interar�

rival times are � and 	 seconds� � � � � � � � � � � � � � � � � � � ���

��� Average size of successful adaptive messages using Strategy �

when ����� of the messages are adaptive and the mean interar�

rival time is �� seconds� ���

��� Transport and Network Layers ���

��� RTP in the Transport Layer ���

��� Transparent Media Scaling ��

�
� ST�II with Transport Protocols � � � � � � � � � � � � � � � � � � ���

��� Establishing a Stream for ST�II � � � � � � � � � � � � � � � � � � ��	

��� Adding a participant using ST�II � � � � � � � � � � � � � � � � � ���

�	� RSVP Stream Establishment ���

��� Adding a participant using RSVP � � � � � � � � � � � � � � � � � ���

xv

xvi

LIST OF TABLES

I� Transfer times for di
erent sized �les from jtfweb	 to jtfweb�� � 	�

II� Transfer times for di
erent sized �les from jtfweb	 to jtfweb�

with additional tra�c on the network� � � � � � � � � � � � � � � � �

III� Average size of messages received using di
erent weighting schemes

under Strategy � ��� applications adaptive�� � � � � � � � � � � � �	

IV� Percentage increase of time required for �le service� under dif�

ferent load conditions for sender� � � � � � � � � � � � � � � � � � � ��

V� Percentage increase of time required for �le service� under dif�

ferent load conditions for receiver� � � � � � � � � � � � � � � � � � ��

VI� Percentage increase of time required for �le service� under dif�

ferent load conditions for both sender and receiver� � � � � � � � � ��

xvii

xviii

ACKNOWLEDGMENTS

First� I thank most of all my loving and patient wife Deborah and son Charles�

Thank you to Debra Hensgen and Taylor Kidd who opened my eyes to architecture� I

also want to thank Joel Levin� Mike Dean and Chuck Blake from BBN for answering

all of my questions�

xix

xx

I� INTRODUCTION

This thesis investigates the software infrastructure necessary to support good

performance for a video teleconferencing �VTC� setup application in a Joint Task

Force environment� It builds upon the architectural components that are currently

part of the Joint Task Force � Advanced Technology Demonstration �JTF ATD� pro�

gram� In particular� it investigates better ways to allocate shared communication

resources� Additionally it examines whether or not� for such communication�intensive

applications� other resources must also be carefully managed� This thesis proposes a

server�client solution that uses a set of servers to keep track of the current resource

loads� Those servers are updated by library stubs that are linked with each client� In

addition to investigating and reporting on various resource allocation policies that we

examined through the use of a simulation� we also document the ease with which we

were able to use the JTF ATD reference architecture �Figure �� to build a prototype

VTC setup system�

A� BACKGROUND

When a crisis occurs in the world that threatens the interests of the United

States� the U�S� military forces are called into service� In order to quickly respond to

the situation� a Crisis Support Team will be formed which is composed of di
erent

U�S� services� The commander of this Joint Task Force �JTF� must communicate with

each component of this force� These components may be geographically dispersed�

and further� they often have hardware and software from di
erent vendors� which

could complicate� rather than facilitate� communication�

In order to ensure that the JTF commander is provided a working command

and control �C�� system� there must be a set of standards to guarantee that each

service�s and vendor�s equipment is compatible with each other� In the past� each

service has independently speci�ed its own requirements� For example� when the Navy

�

Figure �� JTF context for employment� The JTF sta
 communicates with a variety
of other entities� making use of several communication networks� Note that the lines
connecting various entities are meant to indicate the most frequent interactions� they
are not meant to indicate dedicated communication links� In general� all the involved
individuals are networked together� with the possibility of communication as needed
�From �Ref� ����

built a new ship� it would ensure that its communications equipment was compatible

with the rest of its ships and its shore installations� The Army was doing the same

thing on the ground� It built communication systems that met their needs to allow its

infantry to talk to the artillery component� However� when the Army and the Navy

had to cooperate to solve a crisis� their equipment was incompatible and much of their

time was wasted in order to solve this inter�service communication problem� In the

meantime� no progress was made towards resolving the crisis�

Many of the problems described above stem from the fact that each service�s

communications equipment was built by a di
erent contractor� for a speci�c purpose�

�

This drastically reduces the probability of any kind of standardization of hardware or

software� Additionally� by the time that a contractor meets the needs of a particular

speci�cation� the technology is outdated� and� consequently� our services are operating

behind the leading edge of technology�

Due to the shrinking of the Armed Forces along with its budget� Joint Op�

erations are becoming common place� In order to overcome these shortcomings of

incompatible and outdated systems� some sort of standardization is needed� In �����

the Defense Advanced Research Projects Agency �DARPA� contracted Teknowledge

Federal Systems to write a Joint Task Force Architecture Speci�cation� The goal

was to provide an initial architecture that would allow for rapid integration of new

C� hardware and software� This new software architecture will allow for the use of

leading technology and present a �exible and evolvable environment� providing the

JTF commander an anytime�anywhere information support system�

The Teknowledge Federal Systems� JTF Architecture Speci�cation resulted

in the JTF ATD �Ref� ��� Many di
erent sites around the world� with di
erent

hardware architectures� are connected using di
erent communication networks� These

sites use a common set of software services that are speci�ed by the JTF Reference

Architecture� This set of services is chosen to allow other developers to easily build

future C� applications in a short time� such as within a few days or weeks�

B� MOTIVATION

Currently� there are few applications that have been developed that fully exer�

cise the JTF ATD architecture� A basic architecture implementation is in place� and

now the time has come to test the �exibility and performance of this architecture� In

addition to performance questions� this thesis seeks to begin to answer other questions

concerning this reference architecture� such as those listed below�

� How long will it take a developer of an application to become familiar with the
structure of the generic services provided�

	

� Does the JTF Reference Architecture facilitate the reuse of its existing objects
and services�

� Does the JTF ATD Communications Server provide su�cient information to
applications� allowing them to maximize performance� given the status of the
network�

� In addition to the network resource� should the JTF ATD regulate other ma�
chine resources for all applications� even though the majority of the initial ones
will be I�O�intensive�

One of the major concerns of any commander is how coordination� communica�

tion� and control will be handled� One of the most e
ective ways of communicating is

face�to�face� This form of communication allows the commander to use hand gestures�

visual objects� and facial expressions to ensure that his fellow planners completely un�

derstand his intent� Since many of the components of the JTF may be geographically

dispersed� the latest technology in video teleconferencing must be used to meet the

commander�s communication and control requirements�

However� the coordination of such a meeting is not currently facilitated by the

JTF ATD software� Even when using this software� setting up a video teleconferencing

session requires many phone calls to ensure that all locations are synchronized and will

be available for the video conference� In addition to having all participants present� it

is vital that each site have the required materials �i�e�� applications� slides� text �les�

to actively participate in the video conference�

C� PURPOSE

In order to overcome the burden inherent in the current manual setup of the

video teleconference session� and to ensure that an application can succeed even when

network tra�c is bursty� we developed a prototype application that automatically set

up a video teleconferencing session� The teleconferencing setup application noti�ed

participants of any problems with the delivery of �les or applications� This application

extensively uses the services provided by the Communications Server� Worklow Server�

�

and Trigger Server� as well as other underlying servers provided by the JTF Reference

Architecture�

Our VTC setup application must be Network Aware� By this we mean that

it must adapt to the current network availability� In order to do this� we permit users

to specify alternative �les and�or applications� For example� a user might prefer that

an entire video sequence be broadcast to all participants� but if that user�s bandwidth

to certain participants is �currently� low� the user might specify that some still photos�

or even a textual description �le� might be used instead�

Providing feedback to the designers of the JTF ATD Reference Architecture is

vital to its success� While implementing this application� the servers mentioned above

were tested in order to provide insight on how well they meet the clients� needs� and

what things might better be done di
erently�

Our initial tests indicated that the existing Communications Server Architec�

ture by itself will likely not provide su�cient support for network adaptability� We

therefore propose an alternate software architecture� We also compare� via simulation�

the performance of alternate architectures with that provided by the Communications

Server�

D� ORGANIZATION

Chapter II gives an overview of the entire JTF Reference Architecture� Chapter III

describes the VTC setup application and the JTF ATD servers that we used� Chapter IV

presents our initial results from testing the Communications Server� Chapter V de�

tails the simulation software we built and discusses the results from these simulations�

Chapter VI formalizes the mathematical problem that must be solved to allow adapt�

�

ive applications to receive the best quality of service� and Chapter VII discusses a

proposed architecture to solve this problem� Chapter VIII summarizes our �ndings

and suggests future work that builds upon our �ndings�

�

II� OVERVIEW OF THE JTF REFERENCE

ARCHITECTURE

The goal of a reference architecture is to reduce the time associated with applic�

ation integration� The reference architecture speci�es the characteristics from which

a system will be built� Knowing these characteristics allows a programmer to develop

applications quickly by reusing existing objects� For example� a particular reference

architecture might specify that only certain Graphical User Interface �GUI� packages

may be used� A programmer who knows this characteristic can reuse many of the

existing windows and buttons developed for the architecture� A well de�ned reference

architecture will constrain the development and purchasing of hardware and software

meant to be integrated with a particular system� while still allowing the system to

make use of the most current COTS and GOTS software and hardware� In the case

of the JTF ATD� its reference architecture will ensure that all of the Armed Services

purchase and produce compatible equipment that will work together seamlessly during

a crisis�

The JTF Reference Architecture is broken up into four distinct layers �Ref� ���

Each layer uses the functionality of the layers below it� Figure � shows a conceptual

representation of these levels in the JTF Reference Architecture� Beginning at the

top� the following is a list of these levels�

�� The User Environment�

�� Applications that aid the Commander of the JTF and his sta
�

	� Generic Servers that provide various C� and generic access to computing re�
sources� and

�� The base�level infrastructure that provides the distributed computing environ�
ment�

�

Figure �� Four Levels of the JTF Reference Architecture �From �Ref� ����

A� USER ENVIRONMENT

The User Environment� an example of which is shown in Figure 	� speci�es a

common interface to be used throughout all of the JTF applications� With a standard

look and feel for interfaces� such as dialog bars� buttons� and scroll bars� applications

built using the JTF Reference Architecture will behave similarly� thereby minimizing

the ramp up time necessary for e
ective execution of new applications�

In order to help maintain a standard Human Computer Interface �HCI�� the

JTF ATD Reference Architecture further constrains the application developers� In its

evaluation of current technologies� �ve GUI tools have been adopted� They are Mo�

tif�X��� Tcl�Tk� HTML��� Java applets for HTML�� Browsers� and Java Viewers�

Only applications developed using one of these �ve tools can be JTF�compliant�

�

Figure 	� JTF ATD Reference Architecture User Environment Example�

B� PRE�SPECIFIED APPLICATIONS LAYER

The applications provided by this layer directly support the decision making

of the JTF sta
� Applications speci�ed in this layer manage the resources needed

to aid decision making and the implementation of those decisions� For example� a

commander may have an application that gathers important logistical data from his

units� Based on this data� another application will quickly distribute his plans to his

subordinates�

Appropriately� this layer is divided into three sublayers� Task Force Sta
 Pro�

cess Management� Situation Assessment and Planning� and Coordination� Commu�

nication� and Control�Figure ��� Currently� the majority of the functionality of this

layer is performed by humans� but the JTF Reference Architecture speci�es these

functionalities to give developers implementation guidelines for automating them�

�� Task Force Sta� Process Management

The Commander of the JTF will not know where and with whom the next crisis

will be fought� He will not know what resources will be available� or of what quality

those resources will be� The Task Forces Process Management module has eleven

�

principal functions that are used to help the JTF sta
 quickly assess new situations�

These functions aid the user in determining resources� specifying policies� specifying

tasks� organizing and delegating tasks� scheduling tasks� allocating resources� per�

forming tasks� monitoring the developing situation� process replanning� assessing task

performance� and improving task performance�

�� The Situation Assessment and Planning Module

The second module of the Application layer is the Situation Assessment and

Planning Module� This module contains functions to support the following nine gen�

eral categories of the decision�making process of the JTF sta
� situation assessment�

scenario generation� plan generation� plan evaluation� plan selection� plan analysis�

plan monitoring� replanning� and cut�over planning�

�� The Coordination� Communication� and ControlMod�
ule

The �nal module of the second layer is the Coordination� Communication� and

Control Module� This module enables the sta
 of the JTF to pass information to each

other and allows for valuable input from other organizations� There are �ve general

functionalities to support information exchange�

� Generate brie�ngs� reports� orders� and requests�

� Convey brie�ngs� reports� orders� and requests�

� Receive brie�ngs� reports� orders� and requests�

� Assess received brie�ngs� reports� orders� and requests� and

� Disseminate received brie�ngs� reports� orders� and requests�

Our video teleconference setup application resides in this layer�

C� GENERIC SERVICES

The next layer� the Generic Services� provides the Applications Layer with the

common services that are used by more than one JTF application� This layer� along

�

with the one below it� facilitates communication between di
erent applications in the

layers above�

Servers in this layer provide such services as the handling of maps� the delivery

of messages� and the storage and retrieval of data� Additionally� it de�nes a standard

representation for each of these data objects� In order to specify the proper handling

of each class of data types� several servers are provided by the JTF architecture �Ref�

���

Communications Server� Brokers the limited communications bandwidth
to consumer applications via contracts for latency and quality of service�
It charges a price that balances supply and demand�

Data Server� Employs a common object�oriented C� schema that provides
its clients with periodically updated query�based views of distributed� het�
erogeneous databases�

Web Server� Provides its clients with the means to construct� distribute�
view� edit� and replicate node�link structures that incorporate objects of
arbitrary types� For example� Figure � shows a sequence of events that
would e
ect a web containing several di
erent objects� These objects all
relate to the same situation� and� when one object changes� the web up�
dates itself� For instance� when III MEF�s logistical database is updated to
show that it has � less trucks available due to maintenance problems� the
USCINPAC�s database is automatically updated� along with both tactical
maps showing that these trucks are no longer in their respective positions�
�Note� �Web� does not refer to the Internet��

Situation Server� Enables its clients to develop interpretations or �pictures�
of the battle space that incorporate objects� aggregates� inferences� and pre�
dictions� All of these data are indexed over space� time� and their assumed
context�

Plan Server� Enables a group of geographically distributed planners to jointly
hypothesize� evaluate� and disseminate alternative courses of actions �COAs��

Model Server� Initializes and executes simulations that assess COAs in the
context of various assumed situations�

Map Server� Coordinates the maps that pertain to the current situation for
which the JTF sta
 is planning� When a change occurs in the plan or
situation� the Map Server automatically updates the appropriate maps�

��

Message Server� Provides user applications with a single interface for ac�
cessing� composing� editing� routing� and dispatching military messages�

Work
ow Server� Provides its clients with objects that contain the data to
produce mission type orders� This server tracks the �ow of information to
and from all participants of a particular mission order�

Socket Trigger Server� Provides its client with the capability to asynchron�
ously await an event� For example� while typing a mission plan� a user can
receive an email message� The email application contains a trigger that will
notify the user by producing a popup message box�

Database Database
Application

Supply
Application

Supply

1

2
4

III MEFUSCINCPAC

Tactical
Map

Weather
Map Tactical

Map

Weather
Map

5

3 update

update

update update

change

Figure �� Example of a web represented by the Web Server�

D� INFRASTRUCTURE FORCOLLABORATIVEOBJECT
MANAGEMENT� COMMUNICATIONSANDCOMPUT�
ING

The bottom layer� Infrastructure� Collaborative Object Management� Commu�

nications and Computing� prescribes the required functionality of the hardware and

low level components on which the JTF applications operate� Ideally� the JTF Refer�

ence Architecture would use a commercially accepted and standardized infrastructure�

but currently a mature one does not exist that supports the JTF�s needs� However�

the fact that the architecture described above is separated into layers allows for the

de�nition of a standard that re�ects current industry trends and meets the needs of the

��

layers above it� If the interface to the bottom layer changes due to a sharp change in

current industry practices� layers above it will be partially isolated from it requiring

only the interfaces to the infrastructure to be re�implemented�

One function that is needed at the infrastructure level is the management of ob�

jects on a distributed network� The reuse of objects and their capabilities will greatly

reduce the development time for new applications� Ideally� the users of these objects

will be able to use them without worrying about where they are located on the net�

work� Currently� the Object Management Group�s Common Object Request Broker

Architecture �CORBA� provides this function for the JTF Reference Architecture�

Another major concern about the infrastructure that will support the JTF ATD

is the ability of a communication channel to report its speci�c characteristics� In order

for the layers above to properly adapt to changing environments� the bandwidth and

latency characteristics must be known to them� The communications environment

must therefore be able to supply the needed connection attributes such as a ��way

connection� an asynchronous connection� multiple concurrent connections� or a secure

connection� This portion of the infrastructure must also allow for the addition of new

services as they become available�

Finally� the computing portion of the infrastructure layer speci�es the operating

environment in which applications will work� Portability is a key feature needed for

this environment� Currently� Microsoft Windows and the X Windows for Unix� the

defacto standards� are recommended as the common windowing environments� When

incorporating communication between di
erent platforms� the TCP�IP protocol is

recommended�

E� SUMMARY

As mentioned previously� the teleconferencing setup application will be incor�

porated into the second layer of this JTF Reference Architecture� However� it must

use the functionality provided by the layers below in order to be considered compli�

�	

ant� The major concern is making the application adaptable to the changing network

environment� and integrating it with the existing functionality of the architecture� In

order to accomplish this� we will extensively test the current Communications Server

to ensure its proper operation� Early indications show that it is not fully functional�

The major problem appears not to lie in the particular implementation of the current

Communications Server� but rather appears to be inherent in its software architecture�

Consequently� we design a new Communications Server software architecture to facil�

itate network adaptability� In addition to a Communications Server� we will integrate

with an existing application called the TaskTool that directly uses both the Work�ow

and Socket Trigger Servers�

��

III� DESIGN OF THE VTC APPLICATION

Currently the users of the JTF ATD software must manually schedule their

Video Teleconference �VTC� sessions� The originator of a VTC must contend with

many problems such as�

�� Determining a date and time for the VTC that does not con�ict with any
participant�s schedule �usually involving many phone calls��

�� Distributing required materials to all participants� Most materials would be
manually encoded on the sender�s side and manually decoded on the receiver�s
side� Actual transmission also requires multiple e�mails from the sender or
multiple �le transfers on the part of each of the receivers� The JTF ATD
architecture has not adopted a standard format such as MIME �Ref� 	� for
automatic electronic information exchange�

	� When changes occur in a schedule� more phone calls are necessary�

�� When a document is changed� another round of email messages or more ftp
sessions are required�

In addition to reducing the amount of overhead in organizing a VTC� our

implementation has the following goals�

�� Take advantage of the existing software services in the JTF ATD Reference
Architecture� We can best achieve this goal by integrating our application
into the Coordination� Communication� and Control Module of the Application
Layer�

�� Our application should be network aware� Being network aware requires� for
example� that if a large video will not make it to its destination on time due
to a busy network� the VTC application must adjust and send a smaller �le�
perhaps containing only text� instead�

	� Provide a simple Graphical User Interface �GUI� to select VTC participants
�no phone numbers to remember� and to identify pertinent information to be
distributed�

We will evaluate the di
erent components of the JTF ATD software to determine both

�� How easy it is to use the JTF ATD infrastructure� and

��

�� whether that infrastructure will enable such an application to meet its adaptiv�
ity goals�

We now elaborate on the tools found in the reference implementations of the

layers of the JTF ATD Reference Architecture that we will use to build our application�

A� TASKTOOL

In order to meet our GUI goal� we have chosen to use the X�� interface that

is embodied in the JTF ATD TaskTool� The TaskTool is an application that is used

to send taskers from one person to another� A tasker is a request �or an order� for

action� For example� if a commander requires his sta
 to tell him how many injuries

occurred during the last year� he could call on the phone and task his sta
 to obtain

this information� Using the TaskTool can reduce the commander�s job from multiple

phone calls to a few mouse clicks�

Figure � shows the initial screen when the TaskTool is run� Located at the top

is the login name of the user using this instance of the TaskTool �jpkresho�jtfweb���

The middle portion of the screen shows a list of users that are currently in the user�s

group� The user can simply choose the person�s name to whom he wishes to send a

tasker� there are no phone numbers to remember� The bottom portion contains the

taskers on which the user must act�

Using our example above� instead of the commander calling his sta
 on the

phone to task them� he will use the TaskTool� In order to initiate a new task� the

commander will select the user he wishes to task by clicking on the correct folder

�Figure ��� After clicking on the user�s folder� another window similar to Figure � will

appear�

In this window the commander will specify his instructions for the tasker� along

with its Due Date� Status� and Priority� Another �eld that the commander will

�ll out is the Task Type� The type defaults to Analysis� which signi�es that the tasker

requests comments on a particular plan of action� Other task types include FYI �For

��

Figure �� Screen Shot of the TaskTool�

Your Information� and RFI �Request for Instructions�� After typing his instructions�

the commander can proceed to send the tasker� When the commander hits the send

button� the tasker is passed to the JTF ATDWorkFlow Server� which we now describe

in detail�

B� WORKFLOW SERVER

The WorkFlow Server stores and manages objects for the application to which

it is bound� For the TaskTool� it handles the �ow of all of the data that is input by

the users� Once the WorkFlow Server receives this data� it creates an initial tasker

object and then tracks the �ow of this object between users� In order to design our

application� we �rst had to understand the objects that are created when a tasker is

sent�

��

Figure �� Screen Shot of NewTask for the TaskTool�

�� JTF ATD Object De�nition

To di
erentiate its objects from objects belonging to other systems� the JTF

ATD Reference architecture adopted the Command and Control �C�� Schema �Ref�

��� The C� Schema de�nes a common vocabulary of object classes that all JTF ATD

servers and applications share� The key distinguishing factor in the C� Schema is that

it is based on objects� not just data� So� when a speci�c military object is modeled�

the following properties are instantiated�

� Type of the real�world object �e�g�� a tasker or vehicle��

� List of characteristics being modeled� such as weight� speed� and color�

� User names for data attributes�

� Semantic restrictions for the data attributes� including constraints and ranges�

� Function methods for the object�

��

� Semantics of the function methods� including pre�� post�� and error conditions�

� Relationship between this object and other objects�

A programmer might model a tank for his software� Using the above list as a

guideline� the type of the object would be a tank� The programmer would then de�ne

several characteristics such as speed� height� length� number of wheels� and color of the

tank� Also speci�ed may be that the speed must be measured in knots and the color

can only be green or brown� Now that the tank has some attributes and constraints�

it can be manipulated with function methods� One such method might be move� The

programmer can require that before moving� the tank must be stationary� and after

the move� the tank is in a di
erent location� Other conditions should also be checked�

such as the maximum speed and the quantity of fuel in the tank� Finally� once the

tank is modeled� the programmer must also be concerned with relationships to other

objects� such as barbed wire� For example� if barbed wire is run over by the tank� the

tank will be slowed down until the barbed wire is cleared from its wheels�

�� Objects of WorkFlow Server

Figure � shows the objects �along with inheritance� de�ned in the WorkFlow

Server� As prescribed in the JTF ATD Implementation Guidelines �Ref� ��� each

object is de�ned as a C�� class�

The designers of the WorkFlow Server discovered that all of their objects would

contain two similar functions� Therefore� they created the base class C�SchemaObject

that contains the functions that place and retrieve data from a common data source

�e�g�� a database�� and determine what kind of object it is �e�g�� a Tasker� User�

or MultiMedia object�� Then the designers name the objects that model the real

world objects� such as c�Work�owUser and c�Work�owDirectory� We note that the

Work�ow objects use existing objects as attributes of other objects when appropriate

�e�g�� A Directory contains many Identities�� Applying the guidelines discussed above

made writing our application a less daunting task�

��

�� TaskTool to WorkFlow

After a user sends a task using the TaskTool� a new instance of the c�Work�owTasker

is created� A method de�ned for this object called create is then executed� Using

the information passed from the TaskTool� all of the data members �Figure �� of the

new tasker are initialized� In addition� a c�Work�owRelation is created� linking the

originator and each participant to this new tasker�

At this point� we notice that the C�WorkFlowTasker can be quite useful for our

purposes� The data we can store there includes the names of the users to which our

application is required to send any attachments� the names of the attachments �and

alternative �les for use when the C�WorkFlowTasker must adapt to varying network

loads�� the date of the tasker� and the tasker�s priority�

The architects of the JTF Reference Architecture wanted to ensure that� in a

distributed system� users on one system are updated when changes occur at another

location� For example� when a tasker and a relation are created� the TaskTool needs

to update the views of the other users� taskers� Similarly� when another user is ad�

ded to the system� the TaskTool�s view must be updated� The JTF ATD Reference

Architecture provides another server for these services� the Trigger Server�

�� Use of the Trigger Server

The Trigger Server provides the programmer with simple interfaces for the

di�cult task of managing asynchronous messages� It encapsulates network socket

calls� data structures for passing information� and a virtual callback function� The

callback function is used when reacting to a view modi�cation� A simple example will

illustrate this mechanism�

Figure � shows a user viewing a map obtained from the JTF ATD�s Map

Server� The Map Server associates a trigger with each map object that it distributes�

When a map object is changed� a callback function that is speci�cally written for the

Map Server is automatically invoked� The callback function passes an update control

message along with the update to the Map Server� Map objects that are in use can be

�

located anywhere on the network because they are CORBA objects� CORBA

provides a coherent view of the objects that it manages�

A programmer can create his�her own trigger� For instance� below is the C��

code that de�nes my trigger �

class my�trigger � public virtual X�Stream�Trigger�API

�

public�

my�trigger�XtAppContext �app��

virtual void callback�CORBA��Object�ptr triggerSource�

char �reason�

c	NameValues�var additionalInfo��

�

Passing the Xwindows XtAppContext� which is a pointer to an internal structure

used to hold data that is speci�c to a particular application� as a parameter� ties

this trigger to that speci�c application� The next example de�nes the corresponding

callback function�

void my�trigger��callback�CORBA��Object�ptr triggerSource�

char �reason�

c	NameValues�var additionalInfo�

�

cout �� reason �� � trigger received on �

�� triggerSource
��object�to�string�� �� endl�

for �int i � �� i � additionalInfo
�length��� i���

cout �� � � �� �char �� additionalInfo�i��name �� �� �

�� �char �� additionalInfo�i��value �� endl�

Next� we initialize a structure of the predi�ned type c�NameValues� which can pass

additional information along with the trigger�

Initialization is performed as expressed in the code below�

c	NameValues additionalInfo�

additionalInfo�length�	�� ��passing two items

additionalInfo����name � ��name����

additionalInfo����value � ��value����

additionalInfo����name � ��name	���

additionalInfo����value � ��value	���

We are now ready to ��re� the trigger� We �rst declare an object of type

trigger and associate it with our application� then make a call to the Trigger Server�

Here is how such a trigger is declared and associated with an application�

��

my�trigger trigger�app�� �� setup trigger object

��now fire the trigger� passing a ��reason�� and the additional information

Socket�Trigger���narrow�trigger
�info�trigger�
�

TS�Trigger�Fire�trigger
�info�trigger� ��reason���� additionalInfo��

Once the trigger is �red� the callback function will execute and it will output�

reason� trigger received on

��jtfweb��Socket�Trigger�Server����IR�strigger�idl�Socket�Trigger

name�� value�

name	� value	

In addition to the �reason� and the additional information that we passed to the

trigger� there is also some odd looking output beginning with �jtfweb��� This output

reveals the identity of the Socket Trigger Object to which the application connected

for the service of its trigger� Because the JTF ATD distributed environment permits

late binding of trigger to object� CORBA does not return which speci�c socket trigger

object is used until runtime�

The C�SchemaObject class de�nition already has a virtual trigger de�ned�

Therefore any class that inherits from the C�SchemaObject can de�ne its own func�

tionality� Each object in our VTC application will be derived from the C�SchemaObject

class because it descends from the WorkFlow Server� Using careful design and integ�

ration with existing WorkFlow objects� we exploit the underlying triggers that are

already de�ned�

C� BASIC STRUCTURE OF OUR APPLICATION

Our original goal was to design an application that would consist of a server

and a client� Our server would track every VTC session that was scheduled� However�

this would allow for a single point of failure for the entire VTC scheduling system�

Therefore� we decided to have one agent for each user using the TaskTool� Our agent

is launched when the TaskTool is initialized� allowing it to update its VTC tracking

information using the latest information from the WorkFlow Server�

��

We decided that we needed a way to track the status of each VTC session� and

so we de�ned a status �le to contain the following information�

� List of attachments and to which users each has been� thus far� distributed�

� List of participants and whether they have received noti�cation of the scheduled
time of the VTC�

� Time at which to clean up �les at the participant�s location �after giving the
participant a chance to save the �les��

The name of this status �le is the same as the session name� which is discussed

later� This status �le is stored in the �Planner�VTC� directory of the originator�s

home directory� The Planner directory is created in the user�s home directory by the

Planner application when that user is added to the list of the JTF ATD users� The

�rst time a user opens the TaskTool� our agent will create the VTC subdirectory�

Each time the TaskTool is started� our agent must loop through all of the

user�s taskers and �nd the VTC taskers� This procedure requires that we �rst have

a pointer to the c�Work�owUser object that belongs to the speci�c user� There is a

built�in function named my identity that takes as input a login name and returns a

pointer to the correct c�WorkFlowUser object �Figure ��� Recalling from Figure ��

the c�Work�owUser object contains a wealth of information� including copies of all of

the taskers associated with the user� Our application will locate most of its required

data by starting its search from the c�WorkFlowUser object�

Stepping through the c�Work�owUser��taskers� our agent looks for any task�

ers that have the task type VTC� Once a VTC tasker is found� it is processed with

our function actOnVTC� The function actOnVTC creates a session name for the tasker

�Figure �
�� The session name is constructed by appending the originator�s name

to the tasker�s due date� A period is used to separate the name and the due date�

and all blank spaces are replaced by underscores� For example� if the originator

is jpkresho and the due date is 	���

Z May ��� then the session name is �jp�

kresho�	���

Z May ���� Since the originator can only produce one tasker at a time

�	

�and all dates use the Zulu timezone�� this session name will be unique� and can

therefore be used to identify each tasker in the system�

In order to allow our agent software to quickly look up session names� we

then insert each session name into a hash table� Using the string hash object type

provided by the JTF ATD architecture makes this a simple job �Figure �
�� If the

current tasker under consideration is already in the hash table� the agent processes

the next VTC tasker�

However� since our agent has not processed this VTC tasker yet� it must

determine whether the current user is the originator or the participant� If the user is

responsible for the tasker� owner initialization is performed by initOwnerFile� This

function determines whether the status �le already exists from a previous session�

If there is no status �le for this VTC tasker� it is created and the names of any

attachments are written to it �Figure ����

Once the status �le is complete� distribution of the attachments is performed

by the function distribFiles� For each attachment� a new process is created and

run in the background to deliver the attachment�Figure ���� This background process

will continue to execute even when a user is logged out�

To ensure that all processes eventually �nish properly� even when machines are

turned o
 or a power failure occurs� each computer workstation must keep a log of the

currently executing processes� This log will be stored as a �le in a system directory

that is created when the JTF ATD software is installed� This log tracks the session

names which currently have �le distribution processes executing� If the computer is

turned o
� this log �le is checked by a daemon upon system startup� restarting any

�le distribution processes that were interrupted� By using each session�s status �le�

any �les which are shown not to be completed will be redistributed�

This method also is used when a �le distribution process fails due to a network

error or a hardware failure at the distant end� When an error occurs� an error code

is written to the status �le� This error code will be found within �
 minutes when

��

a timer goes o
 for the purpose of checking each status �le� When the error code is

found� a new �le distribution process is started �Figure ����

After the initial pass through the list of taskers for a given user� the agent starts

the �
 minute loop for error checking� and then must wait for an event� Currently�

the most important event that can occur is that a new VTC tasker arrives before the

user logs out� The Trigger Server is an ideal tool to use to react to this event� Since

the c�Work�owUser object contains an array of all of the user�s taskers� an addition

to this array will cause a change in the c�Work�owUser object� From the explanation

above� we recall that a trigger can be set to react to this change� For example� if User

A originates a VTC tasker to User B and User A hits the Send button of the TaskTool�

the Work�ow Server updates both User A�s and User B�s tasker array� causing updates

of both their respective c�Work�owUser objects� thus �ring a trigger for both users�

We set up the trigger to search for a new task when it is �red� Unfortunately�

there is no way to identify the new tasker without iterating through the entire list

of taskers for a speci�c user� A new tasker need not be of VTC type� That is why

we used the hash table for storing VTC taskers� When the trigger is �red� the agent

loops through the taskers� and when it �nds a VTC type� it calls actOnVTC which

implements the steps described above�

By viewing the contents of Figure � and Appendix A� the extensive use of the

Work�ow objects can be seen throughout all of the functions mentioned above� We also

note the extensive use of the trigger and the string hash object� We therefore conclude

that integrating into the existing framework of the JTF ATD Reference Architecture is

simple and advantageous for a programmer with several years programming experience

in C���

D� WISE USE OF BANDWIDTH

Having achieved one of our goals� designing and implementing the agent that

can� on demand� distribute the appropriate �les for a VTC� we turned to our next

��

goal� network awareness� To understand network awareness� and the need for it� we

consider the following scenario�

A commander wishes to schedule a VTC session with � members of his sta

	 hours from now� Three of these sta
 members are on the same local network as

the commander� but the other � are located several hundred miles away on a separate

network� He uses the TaskTool to schedule the VTC and requires that several attach�

ments be sent to all participants� One of the attachments is a ��
MB reconnaissance

video� By the time the VTC is about to start� only the 	 local participants have

received the video� The wide area link and the distant network are too congested to

deliver the rest of the �les on time� and there are � participants that have no data to

refer to�

In order to be adaptive to the network environment� the application should be

able to get some form of data to every VTC participant� The unlucky participants

in our example should receive at least �still� photos� or in the worst case� a textual

explanation of the situation� This will allow them to make informed comments and

decisions�

Fortunately� the JTF ATD Reference Architecture provides a Communications

Server whose functionality can solve the problem described above� By incorporating

into its calculation the size of the �le� the bandwidth of the network� and its estimation

of the network load� the Communications Server can determine the length of time that

it will take to send a given �le� Using this server� an application should be able to

determine whether a �le will fail to arrive on time� and� if so� stop the current �le

transfer and send a smaller �le that will reach the end user in time for the VTC�

Before using the reference implementation of the Communications Server in our

application� however� we wrote some small programs to test its use� This was necessary

to ensure ourselves that we understood how to correctly use the Communications

Server� Chapter IV discusses the Communications Server�s design� along with our

small test programs� The reason for including the test programs in this thesis is

��

because they indicated that both the initial design and the current implementation of

the Communications Server may not be as useful as it could be in building applications

that are truly network aware�

��

C2SchemaObject

function get_type

function internalize

function externalize

c2WorkflowLogins login_history

c2WorkflowUser

c2WorkflowDirectory

c2WorkflowIdentities identities

c2WorkflowRealations taskers

c2WorkflowIdentity

FineC2_String print_name

FineC2_String name

FineC2_String email_address

FineC2_String organization

c2WorkFlowDate logoff_date

FineC2_String client_host

c2WorkFlowDate logon_date

c2WorkflowLogin

c2WorkFlowIdentity who

c2WorkflowTasker what

c2WorkflowIdentity added_by

c2WorkflowRelation

FineC2_String why

c2WorkflowDate when_added

c2WorkflowObject object

c2WorkflowAttachments children

c2WorkflowIdentity added_by

c2WorkflowAttachment

FineC2_String name

FineC2_Strings annotations

c2WorkflowMultimediaObject

c2WorkFlowOctects data

FineC2_String mime_type

FineC2_String mime-encoding

function get_type

c2WorkflowObject

c2WorkflowTaskerHistory

c2WorkflowUser who

FineC2_Strings comments

c2WorkflowData when

c2WorkflowTaskerState state

c2WorkFlowIdentity tasked_by

c2WorkFlowIdentity released_by

c2WorkflowRelations interested_parties

c2WorkflowAttachments attachments

c2WorkflpowTaskerHistories states

c2WorkFlowIdentity responsible

c2WorkflowTasker

FineC2_Strings comments

FineC2_Strings headers

FineC2_short priority

c2WorkflowDate due_date

static function create()

Figure �� Inheritance diagram of Work�ow Server Objects�

��

viewing a Map Server

User

map

receives

update

The map object receives

a trigger that the map

has changed.

the user’s view is updated

Map is updated and

1

2

3

Figure �� Example of a trigger�

1

my_identity(jpkresho) c2WorkflowUser

object for jpkresho
Worklow Information

user name: jpkresho2

taskers
1- A call to my_identity

2 - Block of data for jpkresho obtained from Step 1

Figure �� Initial steps when TaskTool is started�

��

TYPE ORIGINATOR TITLE DUE_DATE

VTC jpkresho Recon Review 260830Z May 97

RFI hensgen Compiler Problem 220900Z May 97

FYI rkarmstr Artillery Targeting 251340Z May 97

1

TASKERS

FYI Intel Brief

VTC Communicationsjpkresho

benton

311200Z May 97

241100Z May 97

session_name = jpkresho.311200Z_May_97

2

3

HASH_TABLE

1 - Loop through Taskers and find VTC taskers

2 - Create session_name

3 - Place into Hash_Table for quick lookup

Figure �
� Finding VTC Taskers and creating session names�

1

jpkresho = originator

STATUS_FILE

Attachments:

 Recon.movie - NO

 Intel.pic - NO
2

Distribute

Recon.movie

Intel.pic

Distribute

3

1 - User is originator

2 - Create status file and track distribution status

3 - Create background processes to ditribute attachments

Figure ��� Creation of status �le and distribution of attachments�

	

Distribute
Intel.pic

Recon.movie
Distribute

1

Recon.movie
Distribute

STATUS_FILE

Attachments:

 Recon.movie - YES

 Intel.pic - ERROR 3transmission
error

completes

2

10 Minute error checker

completes

4

STATUS_FILE

Attachments:

 Recon.movie - YES

 Intel.pic - YES

1 - Distribution processes write to status file

2 - Error checker notices error

3 - Distribution process restarted

4 - Status File updated upon success

Figure ��� Error detection using the status �le�

	�

	�

IV� OVERVIEW AND TESTING OF THE

COMMUNICATIONS SERVER

A� OVERALL CONCEPT OF THE COMMUNICATIONS
SERVER

The Communications Server brokers limited communication bandwidth to con�

sumer applications via contracts for latency and quality of service �QoS� that are priced

to balance supply and demand� In order to be architecturally compliant with the JTF

Reference Architecture� any application wishing to provide network adaptivity must

use the Communications Server�

There are two goals that the Communications Server strives to achieve for its

client applications� The �rst is to advise applications so that they can easily adapt

to the environment that they are currently executing in� The application may need

to react di
erently when it has a bandwidth of ��

 bits�second than when it has a

bandwidth of � Mbits�second� The Communications Server�s second goal is to ensure

that higher priority data receives the bandwidth that it needs� while maximizing the

probability that the lower priority applications will perform acceptably� One example

demonstrating how a lower priority job can adapt to a shrinking bandwidth is for it

to send a text �le instead of a �le with �
 MBytes of graphics and for the receiver to

understand which application to execute based upon the data that it receives�

The Communications Server embodies an economic model� When an applic�

ation wants to send messages over the network� it �rst queries the Communications

Server� For example� initially an application may wish to send 	
 MBytes of data and

may need it to arrive at its destination within � minutes� The Communications Server

calculates a cost based on several statistics including the current demand placed on

the network resource and the desired latency� When the cost is returned to the ap�

plication� the application must decide whether it wishes to spend the required amount

�does it have enough money��� If not� it may submit a di
erent request� for example�

		

one with a lower QoS� i�e�� a later deadline� The application and Communications

Server may iterate these requests several times before determining a QoS that meets

the application�s budget�

B� OUR EARLY EXPERIENCE WITH THE COMMUNIC�
ATIONS SERVER

The Communications Server must eventually� as described above� be rich in

functionality� however� when we started we were not sure precisely what functionality

had yet been integrated into the reference implementation� Before integrating our

application with the Communications Server� we attempted to experiment with the

functions that are de�ned in its Interface De�nition Language �IDL� �Ref� ���

Before we can describe the functions in detail� we �rst need to describe a QoS

structure that is required by many of them as a parameter� The Communications

Server currently de�nes QoS using a structure called the CS Flowspec� This structure

contains the following information�

� Type of virtual service path required� There are two types currently de�ned�
limited data transfer �e�g�� a �le� and an inde�nite stream of continuous data
�e�g�� a VTC session��

� The bandwidth of the data �ow in bits per second�

� The maximum number of bytes that any individual packet will contain�

� The total size of the data� in Kilobytes� to be transferred� This will be known
if a single �le �or group of �les� is sent� For inde�nite service paths� such as
VTCs� this �eld should not be speci�ed�

� The time at which the service path will no longer be needed� This �eld is used
only for inde�nite service paths� For single �le �or group of �les� transfers� this
�eld should not be speci�ed� Time is speci�ed using UNIX�s time t structure�

Another object frequently used by the Communications Server functions is the

Service Path object� This object manages an individual data communications �ow

between a source and destination� The Service Path object contains the following

attributes�

	�

sp source and sp dest� The source and destination endpoints� using a hexa�
decimal representation of their IP addresses�

sp fspec� The �ow characteristics of the service path� using theCS Flowspec
structure above�

sp negqos� The agreed upon QoS for the service path�

sp curqos� The current QoS values on the service path�

sp payerID� The paying client�s identi�cation�

sp totalCost� The total cost for using the service path�

sp notifyID� The client that should be noti�ed of any QoS change on the
service path�

Along with these attributes� the Service Path object provides the following methods

that the Communications Server uses�

CS Spath StartSpath� Enables the use of the service path� Once the service
is started� QoS is measured until the service path is destroyed�

CS Spath EndSpath� Terminates and destroys the service path�

CS Spath Notify� Noti�es the client when a change of service path status
occurs�

CS Spath UseTokens� Expends currency tokens when data transmissions
take place�

The Communications Server�s IDL describes several functions that would be

very useful to our application� Since our application needed to distribute �les and

start Video Teleconferencing �VTC� sessions� we chose to �rst become acquainted

with that subset of the functions� which we enumerate below�

CS CommServer RequestRev� Allows a user to request a service path
between two endpoints� The inputs to this function are the Flowspec� an
object of type CS Flowspec� source and destination IP addresses� a start
time� and an accounting ID for budgeting� This function returns a Service
Path object that was set up based on the Flowspec and the user�s account
balance� The Service Path will be started based on the input start time�

	�

which could be immediately or days in the future� If there are not su�cient
resources to support this request� an exception will be relayed to the client�

CS CommServer RequestQoS� Requests an estimate of the current Qual�
ity of Service available between two endpoints that are speci�ed by IP ad�
dresses� These estimates are based upon anticipated characteristics placed
in the Flowspec� A Network Quality of Service object is returned� specify�
ing the available bandwidth range� an error rate� and the range of packet
delay times currently on the network� If the QoS cannot be determined
�i�e�� the destination may be down�� an exception is raised and relayed to
the client�

CS CommServer RequestCost� Requests an estimate of a cost of service
between two endpoints that are speci�ed by IP addresses� based on an�
ticipated tra�c �ow characteristics from the Flowspec and a requested
QoS�

CS Client Acct GetAvailFunds� Determines the current balance of an ap�
plication�s account� All budget information is maintained by a CS Bank
object�

The JTF ATD Reference Architecture requires that the Communications Server

be implemented using the CORBA standard �Ref� ��� In order to become familiar

with the Communications Server itself� we �rst needed to learn how to access CORBA

objects� Fortunately� the implementors had some example test code that demonstrated

a client binding with the server� The code used to perform the bind to the Commu�

nications Server is as follows�

CS�CommServer�var cs�

try �

cs � CS�CommServer���bind ���CommServer������

catch �CORBA��SystemException� se� �

cerr ���Bind to CommServer failed� ��

cerr ���unexpected exception� �� endl ��se�id�� ��endl�

exit����

cout���Got commserver� ���endl ��cs
��object�to�string�� ��endl�

From the example code� we see that locating a CORBA object is easily done� We note

that we need not specify its machine� CORBA maintains a repository that contains

the locations of all of the objects that have registered�

	�

However� based on the problems discussed in Appendix B� we have concluded

that the CORBA environment for the JTF ATD is very administratively intense� and

that this situation needs to be alleviated if the software is to be used in a crisis

situation�

�� Testing the Functionality
In order to obtain a given QoS� we added a call to the CS CommServer RequestQoS

function to the example code above �Appendix E�� First� we initialized the CS Flowspec

parameters required for this function to the following values�

flow�CSF�type � CS�sp�singlexfer �� service path � file transfer

flow�CSF�dataRate � �������� �� bandwidth of data flow �bps�

flow�CSF�packetLength � ���	� �� Maximum length of packets �bytes�

flow�CSF�totalData � ����� �� Total data to be transferred �Kb�

flow�CSF�schedEnd � now�� � �	� ��	 minutes from now

We then ran our test program to obtain the QoS readings provided by the Commu�

nications Server� Upon completion� the output given to us was�

This is the Bandwidth Range�

Low Val� ���

Hi Val� ����

This is the Delay in ms�

Low Val� 	

Hi Val� �

This is the Error Rate�

Low Val� �

Hi Val� �

This is the Latency in ms�

Mean� 	

This is the maximum Latency in ms�

Max�

The returned values specify the lowest and highest bandwidth that the Com�

munications Server predicts� expressed in Kilobytes�sec� Similarly� the delay shows

the lowest and highest values of the expected delay of a single packet in milliseconds�

Currently the error rate is
� but if there were numbers for the Low and Hi values� it

would represent the Error rate range expressed as �
��X�� For example� if the returned

values were�

This is the Error Rate�

Low Val� �

	�

Hi Val� 	

then the Error rate would be �
�� for the Low and �
�� for the Hi� These values

indicate that the best an application can expect is that one packet will be lost for every

thousand packets� and the worst is � packet lost for every �

 packets on average� The

�nal returned values are the negotiated mean and maximum latency requirements for

a single packet�s transmission time� expressed in milliseconds�

Based on verifying that our input parameters above were not simply echoed

by this function� we decided to get an idea of how quickly the Communications Server

can react to changing conditions on the network� We wrote a test program that would

transfer �les between two machines� Initially we assumed that the Communications

Server would update itself within �
 seconds� Our original understanding of how the

server retrieves its QoS estimates was that it periodically places a load on the network

and determines the latency and bandwidth for the data packets that it sends�

Our �rst test program pair �client and server�� Test ��� used the existing ftp

protocol� For test program pairs Test �� through Test �� we implemented our own

�le transfer protocol and the code for that implementation is contained in Appendix C�

For all tests� the Communications Server was queried by a separate application running

on the same ethernet segment as the tests� In each test� client A connected to its

host�s port �� �ftp�� and then opened up a data connection socket� The corresponding

server process waited for the proper �stor� command over the control port� Once this

command was received� the server process read a speci�ed �le from the �le server into

a bu
er� After this read completed� the entire bu
er was then written over the socket�

The client process� upon reception of the contents of the bu
er� wrote it back to the

�le server�

Test �� simply copied � �les �whose sizes totaled �
 MBytes� from jtfweb	 to

jtfweb�� both of which are located on the same ethernet segment� The values returned

from the Communications Server for this network segment did not change� We initially

thought that the �le transfers happened too quickly for the Communications Server to

	�

identify the load� Therefore� in Test �� we increased our network load by transferring

the � �les repeatedly� � times� resulting in a total of �� �les transferred� placing a

	�
 MBytes load on the network �Figure �	�� Again� there was no change in the

QoS reported by the Communications Server� Table I shows the size of each of these

di
erent �les along with actual and predicted times� We timed the �le transfers and the

average of the actual transfer times is shown in column two� Column three contains the

amount of time� based upon the unchanging Communications Server measurements�

that the �les should have required for transmission�

35MB

4.6MB

11MB

10MB

9.4MB

jtfweb3 jtfweb4

and written at the destination

the QoS between the two machines
Communications Server tracked

Set of Files Set of files transferred 5 times

Receives 5 copies

of the set of files

Figure �	� A set of � �les transferred repetitively � times�

Avg Actual Time Predicated Time
File Size �bytes� for transfers�secs� for transfers�secs�

�������� �� ��
	������ 	
�
�������� �� ��
������	� � �	
������	 � ��

Total Run Time ��� �secs�

Table I� Transfer times for di
erent sized �les from jtfweb	 to jtfweb��

We then attempted a third test that involved sending �les in both directions

between the two machines simultaneously�Figure ���� This test more than doubled

the load placed on the network for Test ��� We repeatedly sent the same � �les as

those shown in Table I from jtfweb	 to jtfweb�� Also� from jtfweb�� we repeatedly

	�

sent a 	� MBytes �le and a ��� MBytes �le to jtfweb	� The process on jtfweb�

continually transferred �les to the jtfweb	 process until the transmission of the ��

�les was complete� As a result� the � �les from jtfweb	 to jtfweb� had the transfer

times shown in Table II�

35MB

4.6MB

11MB

10MB

9.4MB

jtfweb3 jtfweb4
Set of Files

Receives 5 copies

of the set of files

the QoS between the two machines
Communications Server tracked

35MB and 4.6MB files continually transferred

and written at the destination

Set of files transferred 5 times

Figure ��� A set of � �les transferred repetitively � times with additional tra�c on
the network�

Avg Actual Time Predicated Time
File Size �bytes� for transfers�secs� for transfers�secs�

�������� �� ��
	������ �
�
��������
� ��
������	� �� �	
������	 �� ��

Total Run Time ��� �secs�

Table II� Transfer times for di
erent sized �les from jtfweb	 to jtfweb� with additional
tra�c on the network�

We see that the �les in Test �	 su
ered a latency double that of the �les in Test

��� However� again� there was no change in the QoS reported by the Communication

server� The numbers reported were still�

This is the Bandwidth Range�

Low Val� ���

Hi Val� ����

This is the Delay in ms�

Low Val� 	

Hi Val� �

This is the Error Rate�

�

Low Val� �

Hi Val� �

This is the Latency in ms�

Mean� 	

This is the maximum Latency in ms�

Max�

We note that the time for the �le transfers did not double simply due to in�

creased use of the network bandwidth� Since the test program reads from a �le server�

into a bu
er� then eventually writes back to the �le server� several possible resource

bottlenecks contributed to the longer latency� The disk access time for retrieving and

saving the �le must be accounted for� Also� since each machine has only one CPU�

only one processing task can be executing at a time on each machine �i�e�� reading

or writing over a socket�� Currently the Communications Server does not account for

any activity other than the network tra�c� In order to provide an overall picture of

the computing environment� another mechanism� perhaps similar to SmartNet �Ref�

��� should be used in conjunction with the Communications Server� Such a mechanism

would ensure that all shared resources would be accounted for when determining that

a process should adapt�

In order to reduce the delays introduced by disk accesses on the �le server�

Tests �� and �� used an additional test program that reads one large �le into a

bu
er� then transfers it back and forth until interrupted �Appendix D�� We used

system tools to ensure that we were not swapping back to the �le server during these

tests� Therefore� after the initial read into a local bu
er� there were no accesses

performed at the �le server� As in the tests above� jtfweb	 and jtfweb� were used�

and a separate application was used to collect statistics on this ethernet segment from

the Communications Server�

Test �� started one server on jtfweb	 that listened for a request for a con�

nection� Then� from jtfweb�� we started the client which connected to the server on

jtfweb	 and began transferring a �le� The �le that we used was � MBytes long and

took about � seconds to make a round trip from jtfweb� to jtfweb	 and back �Fig�

��

ure ���� While this test ran there was no other load on the network or on either

machine� We started the reporting of the Communications Server�s statistics before

this transfer began to view the initial load� and it reported the same numbers as above�

As we continued to transfer the � MBytes �le between jtfweb	 and jtfweb� for a total

of � minutes� we never saw a change in the statistics reported by the Communications

Server�

jtfweb3 jtfweb4

4MB

8 Sec round trip

Figure ��� Continuous transfer of � �le between � machines�

In order to produce additional network tra�c� Test �� transferred a � MBytes

�le between vcl and jtfweb� �Figure ���� two other machines that are on the same

ethernet segment as jtfweb	 and jtfweb�� Again� with the Communications Server

application tracking the statistics between jtfweb	 and jtfweb�� we began the repeated

transfer of the � MBytes �le� After taking a few readings of � seconds for a round trip of

this �le �same as above�� we then started the transfer of the � MBytes �le� Immediately

we could see the time required to transfer the � MBytes �le almost doubles to ��

seconds� However� the Communications Server never changed the statistics it was

reporting� This test also ran for � minutes�

At this point we began to think that� perhaps� we were not placing the correct

information into the Flowspec parameter that is sent to the Communications Server�

Initially we placed the following information into that structure�

flow�CSF�type � CS�sp�singlexfer �� type of service path

flow�CSF�dataRate � 	������� �� bandwidth of data flow �bps�

flow�CSF�packetLength � ���	� �� Maximum length of packets �bytes�

flow�CSF�totalData � ����� �� Total data to be transferred �Kb�

flow�CSF�schedEnd � now�� � ��� ��� minutes from now

��

jtfweb3 jtfweb4 vcl jtfweb5
4MB

15 Sec

9MB

All machines on same ethernet segment

Figure ��� Continuous transfer of � �le for two sets of machines�

In order to indicate to the Communications Server that we had an even larger load on

the network� we changed the bandwidth of data �ow to � MBytes and the total data

to be transferred to �� MBytes� We then ran the same tests with these new settings�

but the Communications Server continued to report the same QoS statistics�

After these tests� we then questioned the Communications Server�s implement�

ors again about the results� They thought that we should be getting di
erent val�

ues from the Communications Server and they promised to examine the problem

more closely� They also stated that the Flowspec structure was currently not being

used for QoS calculations� and could be passed to functions without being initial�

ized� This clari�cation explained why changing these numbers had no e
ect on the

Communications Server� In addition to this information� they also mentioned that the

CS CommServer RequestQoS function was the only function that was implemented�

All other functions currently returned zeros� After further discussion with them� we

drew two conclusions about the Communications Server�s QoS measurements� First�

the QoS was being estimated by having the Communications Server transmit and re�

ceive di
erent sized packets and measure the length of time that those packets were

taking to travel between two endpoints� We will refer to the placing of data on the

network by the Communications Server as a �ping� which is terminology borrowed

from a similar UNIX function� Second� the timing of these pings were not frequent

enough for our load� which� like all network tra�c was bursty� to be re�ected in the

Communications Server�s output�

�	

The implementors re�con�gured the Communications Server so that it would

ping and measure more frequently� Once the frequency of these Communications

Server�s pings was increased� our test programs found that the Communications

Server�s output changed� An example of the QoS reports we then received is below�

This is the Bandwidth Range�

Low Val� 	�	�

Hi Val� ����

This is the Delay in ms�

Low Val� 	

Hi Val� 	�

This is the Error Rate�

Low Val� �

Hi Val� �

This is the Latency in ms�

Mean� 	

This is the maximum Latency in ms�

Max�

These readings did re�ect a heavier load on the network� As one can see� the available

bandwidth shrunk and the Maximum Latency went up dramatically� We wanted

our application to use the Communications Server to help it decide which �les were

appropriate to send over the network� However� we did not know how to use the

inaccurate raw data reported by the Communications Server� In order to integrate

smoothly into the rest of the JTF ATD architecture� we searched for other servers and

applications that were using the CS CommServer RequestQoS function� We found

that several were using a function named cs qtrans which returned the amount of

time it should take to transfer data based on the size of the data� This function

simply makes a call to the QoS function� as we did above� and does some calculations

based on the bandwidth range�

Unfortunately� using the numbers from the last Communications Server test

�Bandwidth low� �
��� Hi� 		���� the cs qtrans function indicates that a � MBytes

�le would require �� seconds to be transferred in one direction� Using other numbers

from this same test at a di
erent point in time� cs qtrans returned 	�
 seconds�

However� our tests show that the transfer of this � MBytes �le� round trip� is only ��

��

seconds on average� and never requires more than �
 seconds� This di
erence reveals

the instantaneous nature of the statistics gathered by the Communications Server�

That is� the Communications Server does not keep any historical data to help identify

trends� The Communications Server simply bases its values on a single sample taken�

so it might re�ect either a sudden brief spike of tra�c or a short�lived quiet period�

The Communications Server developers had evidently also found that the cur�

rent approach to implementing the Communications Server proved inadequate for

application developers� That is� their �ndings must have agreed with ours� the band�

width and latency predictions varied widely from that which applications could ex�

pect to see� Therefore� the Communications Server developers added random number

generation to the cs qtrans function so that application developers could ensure that

their applications were adaptive� while awaiting improvements to the Communications

Server that could yield better predictions�

C� CONCLUSIONS FROM THE TESTING

After studying the Communications Server and testing one of its functions� we

have made several observations� Currently� the CS CommServer RequestQoS function

is the only one that returns anything back to the client� The QoS data that is returned

from the function is not accurate enough to provide a client with network adaptive

capability� In addition� the Flowspec structure is not used� however� it would be

a great way to gather additional information about the load on the network� The

Communications Server has the potential to be a repository� possibly distributed� of

overall network activity�

The method in which the Communications Server gathers its statistics also puts

an additional burden on the network� By continually pinging the network� unnecessary

tra�c is produced� Also� using only instantaneous timings from these pings causes

the statistics that it reports to inaccurately re�ect the status of the network�

Our original goal was to build a truly network adaptive application� However�

��

the inaccuracies of the information returned by the existing Communications Server

prevented us from achieving this goal within the existing JTF Reference Architec�

ture implementation� Therefore we turned our attention toward determining whether

adaptation goals could be better met if the Communications Server predictions were

more accurate� The following chapters describe additional experiments� and their

results� that determine whether a more accurate Communications Server could help

applications better adapt at the appropriate time� Following that� we propose an al�

ternate Communications Server architecture that solves several of the problems with

the current Communications Server and hopefully can do a better job estimating the

network load�

��

V� SIMULATION EXPERIMENTS

Earlier in this thesis we examined� both qualitatively and through experiment�

the ability of applications to adapt� given information from an intrusive server that

occasionally examined the state of the resource� That is� the server we investigated

placed loads upon resources� calculated the instantaneous performance for those loads�

and published this performance prediction to the adaptive clients� Use of this type

of server causes two problems� First� it adds to the� already heavy� load on stressed

resources� Second� in our experiment with monitoring of network loads� the predicted

performance was substantially di
erent from the experienced performance� In this

chapter� we investigate� through simulation� how accurate the predictions of resource

status� particularly the network resource� must be in order for adaptive clients to

obtain good performance� In our simulations� we examine the performance of three

di
erent client adaptation strategies� each making use of resource loading information

of di
ering quality� In the next section we enumerate our adaptation strategies� Then

we present both our assumptions and the parameters that we varied in our simulations�

Finally� we present our simulation results and summarize our conclusions�

A� ADAPTATION STRATEGIES

In di
erent simulations� we varied the percentage of adaptive clients between

����� and �

� of all clients� Non�adaptive clients exchange data that is available

only in a single format� On the other hand� all data that an adaptive client needs to

send is available in any of �ve formats� The actual sizes for each of the �ve data formats

are chosen from exponential distributions with means 	

 MBytes� 	

 MBytes� 	

MBytes� 	 MBytes� and �	 MBytes� We assume that our adaptive clients� priorities

for the various formats decrease with size� That is� the most important format for

each client to send is the largest one and the smallest format is of least importance�

We ran our simulations using three di
erent client adaptation strategies� In

��

the �rst strategy� Strategy �� the client �rst requests a performance prediction from

the server� that is� it requests that the server respond with its current estimate of the

available bandwidth remaining on the network� The client then calculates whether�

based on this predicted bandwidth� it should be able to transmit the largest size format

of the required data� If the calculation indicates that this format can be transmitted

in its entirety before its deadline� the client begins to send the data� If the client�s

calculation indicates that this transmission cannot be completed before the deadline�

the client iterates through the various size formats from larger to smaller� until it

determines the largest one that it can expect to send in its entirety prior to that

deadline� and begins to send it� Periodically the server updates the client with new

estimates of available bandwidth� If� based upon a new estimate� the client calculates

that it cannot complete sending the format that it is currently transmitting prior to

its deadline� it stops transmitting that format and searches for a smaller format that

it can expect to complete prior to the deadline and begins transmitting that format� �

Strategy � is very similar to Strategy �� The only di
erence is that in Strategy

�� both adaptive and non�adaptive clients take action if their deadline arrives and they

have not completed transmitting their current format� they stop transmitting when the

deadline arrives� In Strategy �� such �late� formats were sent to completion despite

the deadline having passed�

Strategy � acts as a control case� In this strategy� the client does not really

adapt� It always attempts to send the largest format and keeps sending it until it has

been transmitted in its entirety� We note that this strategy is the default strategy in

most Internet web servers�

B� ASSUMPTIONS

We built discrete event simulations of communication�intensive applications

that communicated with one another over a fully�connected network� In this section we

�The adaptive clients in our current simulation do not ever start sending a larger format�

��

enumerate the values that are �xed in our simulations� Before listing our assumptions

about the network� we �rst de�ne several terms�

Node� A location that contains many computers that generate network tra�c�
such as a command center or a ship�

Client� An application that generates its own messages� There are typically
many clients at a single node�

Best Case Latency� The amount of time it would take a message to arrive
if it could use all of the bandwidth on a channel� We will denote the best
case latency as Lb�

Given these de�nitions� our simulation models a network with the following

properties�

� There are only two nodes� No routing is done� all messages are sent over direct
connections�

� The connection between the two nodes is full duplex with throughput �

Mbits�second� Half of the network�s bandwidth� � Mbits�second� is available
for each direction�

� Each client using the network receives an equal share of the bandwidth�

During the simulation� non�adaptive clients generate ordinary messages ac�

cording to the interarrival distribution associated with that particular simulation� Or�

dinary messages di
er from adaptable messages in that ordinary messages are

available in only a single format� The adaptable messages are generated using the

same interarrival distribution� All messages have the following attributes�

� A priority� P � that ranges between
 �high priority� and � �low priority�� We
generate the priority using a uniform distribution�

� The tolerated latency is the amount of time that the application is willing
to wait for the data to arrive� before it considers it to be late� The deadline
is derived by adding the current time to the tolerated latency� As might be
expected� we setup the experiment such that the higher priority messages have
smaller tolerated latencies� that is� the higher priority messages need to arrive
at their destination sooner� We set the tolerated latency to aP �Lb� where aP is

��

set using the following criteria� If the priority of a message is � or �� aP is set
to ��� if it is between � and �� aP is ��� if the priority of a message is between
� and �� the aP is �
� and� �nally� if the priority is
 or �� aP is set to �� The
tolerated latencies for adaptive messages are chosen from a uniform discrete
distribution of fLb � 	
 minutes� Lb � �
 minutes� Lb � �
 minutesg�

� Non�adaptive clients send ordinary messages that have di
erent lengths de�
pending upon their class� Class A messages are exponentially distributed
around � MByte� Class B messages are exponentially distributed around ���
MBytes� and Class C messages are exponentially distributed around �
 MBytes�
In addition� classes of messages are generated with di
erent frequencies� Class
A messages are generated �
� of the time� Class B messages ��� of the time�
and Class C messages ��� of the time�

The above assumptions are similar to those used in simulations of the Com�

munications Server performed by Tecknowledge Federal Systems �Ref� ���

C� SIMULATION PARAMETERS

In this section we identify the various simulation parameters and how we varied

them over di
erent simulations�

We ran di
erent simulation experiments for di
erent average interarrival rates�

In each simulation� the amount of time between node message generation is exponen�

tially distributed around the mean� The means for the di
erent experiments were set

at � seconds� 	 seconds� �� seconds� and �
 seconds�

In each experiment� some of the clients were adaptive� while the remainder

were non�adaptive� We ran di
erent experiments where �

�� �
�� �
�� ��� �����

and ����� of the clients were adaptive�

We also ran di
erent experiments varying the accuracy with which our server

could predict the instantaneously available bandwidth� Since our simulated server

knew the exact instantaneous bandwidth available� to vary the accuracy� we chose

a number from an exponential distribution around various di
erent means and with

probability �� we added the generated number to the actual instantaneous bandwidth�

otherwise we subtracted the generated number� We ran di
erent experiments for these

�

means� measured in Kbits�second� of
� ���� �� ���� �
� �
� and �
� We call this the

Instantaneous prediction� The majority of our experimental space �Figure ��� was

focused on the three parameters discussed above�

pe
rce

nta
ge

 of
 ad

ap
tiv

e c
lie

nts

Interarrival times

Band
widt

h P
red

ict
ion

 A
ccu

rac
y

Figure ��� Experimental space using the parameters of interarrival times� percentage
of adaptive clients� and accuracy of bandwidth estimates�

Also� we had our simulated server use two di
erent sets of weights when

producing its bandwidth estimation� In the �rst case it used Predictioni
��� �

Instantaneous prediction�
����Predictioni��� where Predictioni was the estimate

used to determine if the current format could be completed� We also performed exper�

iments using Predictioni
��� � Instantaneous prediction �
��� � Predictioni���

When we discuss results pertaining to using these di
erent weights in Section �� we

will denote them as the weights ����� ���� and ����� ����� respectively�

In addition to the above predictions of bandwidth� we also ran experiments

simulating the bandwidth predictions of the JTF ATD Communications Server� We

now describe how we arrived at the values we used in those simulation experiments�

��

�� Communications Server Bandwidth Prediction Val�
ues

In order to use accurate information for our simulations of the JTF ATD Com�

munications Server� we ran several �le transfer experiments� While the Communica�

tions Server monitored the bandwidth between two computers� we transferred �les and

retrieved 	� readings of the Communications Server�s predictions� With these data

points� we �tted the curve representing the di
erence between actual bandwidth and

predicted bandwidth� to an exponential distribution with a mean of �Mbit� and o
set

	�
Kbits in the negative direction� This distribution was used to produce bandwidth

predictions for simulating the Communications Server�

�� Random Seeds Used

We ran each experiments described above for �
 di
erent sets of random seeds�

In each set� a di
erent seed was used for each of the following distributions�

� the interarrival rate�

� the message class type generation�

� the distribution that determinedwhether a client was adaptive or non�adaptive�

� each di
erent message size distribution� and

� the priority�

D� RESULTS

In this section we present results from our simulations and summarize our

conclusions from these results� We present results from additional simulations in

Appendix F� The data in this appendix is consistent with the conclusions that we

draw in this section� For each experiment� we measured both the average size of the

adaptive messages that arrived before their deadline and the percentage of adaptive

messages for which no format arrived on time�

��

�� The Need for Adaptation

We �rst present results that demonstrate the need for adaptation� After these

results and our conclusions from them� we restrict our attention to only Strategies �

and � �Section A��

As mentioned above� Strategy 	 was our control case and did not use adaptive

applications� In these experiments� �� of the processes attempted to send a message in

size similar to the �rst form of an adaptive message� 	

 MBytes� For all interarrival

times �means of � seconds� 	 seconds� �� seconds� and �
 seconds�� ��� of these

large messages did not arrive before their deadline� even when we removed messages

immediately if they exceeded their deadlines� In order for these applications to meet

critical deadlines�� it is apparent that both a method of estimating the network resource

load and a strategy for adapting to bandwidth availability is needed�

�� The E�ect of Varying Weights

In these experiments� we found that using the weight pair ����� ���� is substan�

tially better than the pair ����� ����� In later sections we restrict our discussion to

experiments involving only the weight pair ����� �����

Using Strategy �� we ran simulations where �� of the messages were adapt�

ive to compare the di
erent weighting schemes� Table III shows these results� The

Interarrival Size for ����
 ���� ����
 ����
�secs� �KBytes� �KBytes�

 ��� �
��
� ����
�	�
�� 	���� 	��
�
��
��
��
�����

Table III� Average size of messages received using di
erent weighting schemes under
Strategy � ��� applications adaptive��

weighting scheme ����� ���� is much better when the messages have an interarrival

mean time of � and 	 seconds� and slightly better than ����� ���� for the �� and �

�	

second mean interarrival times� The di
erence between the weighting schemes is a

matter of reaction time� Using ����� ����� adaptive applications will tend to react more

quickly to an instantaneous reading which can cause resource thrashing� especially in

a heavily loaded environment� On the other hand� the ����� ���� scheme allows adapt�

ive applications to make better informed decisions based on statistics gathered over a

period of time� Based on these results� we ran the rest of our simulations using the

����� ���� weighting scheme�

�� Strategy � vs� Strategy �

In this section� we see that there is some bene�t to be gained from dropping

messages that exceed their deadline� In comparing these two strategies� we use an

Instantaneous prediction with the mean di
erence between actual and predicted

bandwidth being ��
 Kbits�

Figure �� shows that when the network resource is very busy �mean interarrival

rate of � seconds�� the bene�t of dropping messages that exceed their deadline are

substantial� The greatest bene�ts are seen as more of the applications using the

network resource cannot adapt� The results for a 	 second interarrival time are very

similar�

When the network resource becomes less loaded� there is less bene�t from

dropping late messages� This is due to the fact that there are fewer messages that are

late� and hence eligible to be dropped� because the network resource is not in high

demand� Figure �� shows the result for mean interarrival time of �� seconds� When

the mean interarrival time is �
 seconds� applications receive su�cient bandwidth the

majority of the time� Figure �
 demonstrates that in this case there is no bene�t or

penalty from dropping late messages�

�� Determining How Accurate Server Estimates Should
Be

In this section we examine a multitude of operating points to determine under

what conditions�

��

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 S
iz

e
of

 A
da

pt
iv

e
M

es
sa

ge
s

R
ec

ei
ve

d
(K

b)

Percent Adaptive Messages of Total Messages Sent

’strategy1’
’strategy2’

Figure ��� Average size of adaptive messages received for an interarrival time of �
seconds and mean delta bandwidth prediction of ��
 Kbits�

�� A simple server� such as the JTF�ATD Communications Server� will su�ce�
and

�� When a more accurate assessment of resource load is needed�

Before discussing actual results for di
erent accuracies of server estimates� we

note that simulations that use � and 	 seconds as their mean message interarrival time

model a crisis situation� In a military environment� such interarrival rates occur in

an emergency� such as during a sudden biological attack� In this case� the network

resource will be in high demand� but the priority messages must make it to their

destinations before their deadlines� However� when the mean interarrival times are ��

and �
 seconds� the network resource is under normal use� and not many applications

are competing for the same network resource�

��

0

20000

40000

60000

80000

100000

120000

140000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 S
iz

e
of

 A
da

pt
iv

e
M

es
sa

ge
s

R
ec

ei
ve

d
(K

b)

Percent Adaptive Messages of Total Messages Sent

’strategy1’
’strategy2’

Figure ��� Average size of adaptive messages received for a mean interarrival time of
�� seconds and mean delta bandwidth prediction of ��
 Kbits�

In order to determine how accurate a server must be when estimating a re�

source�s load� we collected data for each of the Instantaneous prediction means enu�

merated above� The resulting di
erence in bandwidth accuracy is de�ned as�

Delta Bandwidth Prediction j predicted bandwidth� actual bandwidthj

The �rst criteria analyzed was the number of messages that did not make their dead�

lines under Strategies � and �� Figures �� and �� display the results of Strategy �

when there are �

� and ����� adaptive messages respectively� Note that the points

labeled �Communications Server� model the accuracy of the JTF ATD Communica�

tions Server as discussed above� The results showing the number of late messages for

Strategy � show a similar trend to Strategy �� These results are shown in Appendix F�

��

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 S
iz

e
of

 A
da

pt
iv

e
M

es
sa

ge
s

R
ec

ei
ve

d
(K

b)

Percent Adaptive Messages of Total Messages Sent

’strategy1’
’strategy2’

Figure �
� Average size of adaptive messages received for an interarrival time of �

seconds and mean delta bandwidth prediction of ��
 Kbits�

For each of the Delta Bandwidth Prediction means� including the Commu�

nications Server� there were no late messages for mean interarrival times of �� and

�
 seconds� Therefore� we now focus on the crisis situations �� and 	 second mean

interarrival times� to determine how accurate a server�s prediction must be� Figure �	

and Figure �� eliminate the Communications Server reading and focus on more ac�

curate assessments� Again� the results for Strategy � show similar trends and can be

viewed in Appendix F�

After examining these results closely� we determine that in a crisis situation�

being within � Kbits�second of the actual network throughput allow most messages

to meet their deadlines� Using a less accurate server results in a signi�cant amount

��

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

Lo
st

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’2seconds’
’3seconds’

Figure ��� Percentage of adaptive messages not received by deadline when using
Strategy � and �

� of messages are adaptive�

of lost data�

The second criteria we examine is the average size of the message that does ar�

rive on time� Figure �� shows the results for Strategy � when �

� of the applications

are adaptive� We note that when the server estimates are less accurate� only smaller

messages are successfully received� This trend follows for all interarrival times for

these simulations� and those results can be viewed in Appendix F�

In order to better understand the circumstances under which the average size

received is maximized� we refer to Figure ��� The �gure indicates that being within

��� Kbits�second will get the best results in a crisis situation under most loads� The

only exception to this rule is seen when only ����� of the applications are adaptive�

��

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500 600 700

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

Lo
st

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’2seconds’
’3seconds’

Figure ��� Percentage of adaptive messages not received by deadline using Strategy
� and ����� of messages are adaptive�

and the mean interarrival rate is �
 seconds� Figure �� shows that in this case a

server such as the Communications Server will allow for larger adaptive messages

to arrive on time� Since there is little competition for the network resource� a less

accurate picture of the load is acceptable� Overall though� as Figure �� shows� when

a crisis situation occurs� it is better to have an accurate server� one that can predict

the network bandwidth within � Kbits�second� The results for Strategy � again are

similar to the results presented here� Appendix F contains all the results for these

simulations�

As can be seen from the results� most cases require an accurate estimate of the

network resource �within � Kbits�second�� especially in a crisis mode� However� when

��

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

Lo
st

Average Delta Bandwidth Prediction (Kbits)

’2seconds’
’3seconds’

Figure �	� Percentage of adaptive messages not received by deadline using Strategy
� and �

� of messages are adaptive�

there is little competition for the resource and the percentage of adaptive applications

were small� a less accurate estimate may be useful�

E� CONCLUSIONS

In this chapter we saw that for many situations� an adaptive client requires

a better resource load assessment than can be furnished by an intrusive server that

occasionally examines the state of resources� In Chapter VII we describe a proposed

architecture for a new server that we expect to yield this better assessment� However�

before we propose an architecture� we formalize the scheduling problem to which that

architecture must contain a solution� In particular� although scheduling algorithms

�

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

Lo
st

Average Delta Bandwidth Prediction (Kbits)

’2seconds’
’3seconds’

Figure ��� Percentage of adaptive messages not received by deadline using Strategy
� and ����� of messages are adaptive�

are beyond the scope of this thesis� our architecture must ensure that the scheduling

algorithms that the architecture will contain are furnished with the information they

need by the rest of the architecture� To determine the information that must be

provided by the architecture to these algorithms� we next formalize the scheduling

problem�

��

3600

3800

4000

4200

4400

4600

4800

5000

5200

0 100 200 300 400 500 600 700

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’15seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �

�
of the messages are adaptive and the mean interarrival time is �� seconds�

��

300

400

500

600

700

800

900

1000

1100

1200

1300

0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

’2seconds’
’3seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �

�
of the messages are adaptive and the mean interarrival times are � and 	 seconds�

�	

300000

350000

400000

450000

500000

550000

600000

0 100 200 300 400 500 600 700

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’60seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �����
of the messages are adaptive and the mean interarrival time is �
 seconds�

��

2000

4000

6000

8000

10000

12000

14000

16000

0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

’2seconds’
’3seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �����
of the messages are adaptive and the mean interarrival times are � and 	 seconds�

��

��

VI� MATHEMATICAL FORMULATION OF

THE PROBLEM

In this chapter� we formalize the mathematical problem that must be solved

in order that prioritized adaptive applications will receive the best quality of service�

given the total demand for resources� The previously described simulations examined

the question of how well we must know the load on a �network� resource in order to

build adaptive applications that use that resource� Before presenting our mathematical

model� we demonstrate that many resources� not just the network� must be considered

in such a model� In fact� we show that other resources must be considered even if

the applications are exclusively network�intensive� Therefore� we �rst demonstrate the

need to monitor these other resources� such as CPUs and hard drives� then state the

formal de�nition of the problem any architecture that supports adaptive applications

must address�

A� ADAPTIVE APPLICATIONSNEED TOKNOWABOUT
ALL RESOURCES

In addition to the load on the network� other resource loads must be monitored

to give an application an e
ective picture of its current computing environment� If

a network intensive application ignores the use of resources such as CPUs and hard

drives� it will have an inaccurate estimate of when a particular �le transfer will end�

causing data to sometimes miss a deadline and therefore to be useless at the receiver�s

end�

In order to show that the load on both the CPU and the hard drive a
ect a

network transfer� we conducted experiments that transferred �les between two com�

puters connected via an isolated ethernet network �Figure ���� The two computers

were identical Intel Pentium Pro computers running Linux� a PC version of Unix�

Three di
erent sized �les were transferred from Computer A to Computer B

��

intensive
CPU

job

Ethernet (10Mbs)

File Transfer

COMPUTER

A

COMPUTER

B

intensive
job

Disk

Figure ��� Measuring transfer times with di
erent loads on the computers�

��MB� ��MB� and �
MB�� For all experiments performed� these �le transfers were the

only loads placed on the network�

In order to simulate CPU and disk intensive processes� we placed BYTE

Magazine�s BYTEmark benchmarks �Ref� �
� on each computer� Initially� a �le

of each size was transferred from Computer A to Computer B� Neither machine was

executing any programs besides the the ones listed below� The following list of ex�

periments were performed while transferring a �le of each of the sizes enumerated

above�

�� No programs other than the �le transfer were executing on either Computer A
or Computer B�

�� � CPU intensive process on Computer A

	� � disk intensive process on Computer A

�� � CPU intensive process and � disk intensive process on Computer A

�� � CPU intensive process and � disk intensive processes on Computer A

�� � CPU intensive processes and � disk intensive processes on Computer A

Each of the above experiments were then also performed with the loads in experiments

��� on Computer B� and no load on Computer A� Individual experiments were run �

times to gather the data discussed below�

��

Table IV shows the results of these experiments when the loads were place on

Computer A� and Table V shows the results when the loads were on computer B�

Size �CPU �disk �CPU
�disk �CPU

disk
CPU

disk
�MB� ��� ��� ��� ��� ���
� ���� ���� �����
���� ����

�� ���
 �
��� ���	�
���	
����
�� ���� ���� ���� �
���
����

Table IV� Percentage increase of time required for �le service� under di
erent load
conditions for sender�

Size�MB� �CPU �disk �CPU
�disk �CPU

disk
CPU

disk
�MB� ��� ��� ��� ��� ���
� ��
� ���� �����
����
����
�� ���� ���	 �
���
���
 �����
�� ��	� ��

 �
��� �	�
� �����

Table V� Percentage increase of time required for �le service� under di
erent load
conditions for receiver�

We then simultaneously placed di
erent loads on Computer A and Computer

B at the same time while transferring each �le� Table VI shows the results from these

experiments�

Size�MB� �CPU
�disk on A and B
CPU

disk on A and B
�MB� A and B��� A and B���
�
���� �����
��
��

 �����
�� ���� �����

Table VI� Percentage increase of time required for �le service� under di
erent load
conditions for both sender and receiver�

Because the �le transfer is the only tra�c on the network� the longer transfer

times shown in the above tables is due to the use of other resources� Even though

��

the �le transfer is network�intensive� it must obtain the CPU resource to execute

instructions which move the data to memory and over the network� Therefore� it

competes with the compute�intensive process for that resource� e
ectively slowing

both processes� These experiments show that not only does the network resource need

to be monitored� but also other resources such as CPUs� memory and hard drives

must be monitored to predict performance of even network�intensive processes� If the

transfer of an important video �le is to take place under loads similar to that shown in

Table VI� then an estimate of three hours based only on an accurate assessment of the

network tra�c would underestimate the time required by an hour� Because we expect

to support both network�intensive and other applications� e�g�� real�time� compute�

intensive� and I�O�intensive applications� our formal description of the problem at

hand includes all relevant resources and not simply the network�

B� THE FORMAL MODEL

In the next chapter we will propose an architecture for supporting adaptive

clients that incorporates mechanisms for obtaining feedback on the status of resources

as well as providing scheduling advice for the processes that must be adaptive� In our

model� we assume that we have various applications running on a set of distributed�

shared and heterogeneous resources� The problem that our new architecture addresses

is that of how to provide a software architecture that permits these applications to

best adapt to varying loads on those resources�

Our mathematical model formalizes what we mean by best� Each application

uses resources to acquire needed information such as weather data� map data� and�or

planning data� The process of acquiring this information can be very simple� requiring

only a query of a database� or it can be quite complex� requiring that many di
erent

pieces of data be gathered together� used in a simulation� and the results of that

simulation be analyzed� In each case� the needed informationmay be available in many

di
erent forms� e�g�� fully rendered videos� color graphics� and textual summaries� A

�

user may also settle for raw data rather than processed data if the processing resources

are too busy� Also in a distributed environment� each application� operating on behalf

of a user� may have a di
erent priority than other applications� These priorities may

re�ect a user�s economic situation or military rank�

To formally state the problem any architecture that supports adaptive applica�

tions must address� we must �rst begin by enumerating our notation� Following these

de�nitions and assumption statements� we present several mathematical constraints

and an objective function that quanti�es the problem� In order to understand how the

mathematical terms used in the following paragraphs are related to one other� please

refer to Figure 	
�

Applicationj

��������������������
�������������������

is associated with�
P � priority

D �Data

���������������
��������������

T � deadline
has priority�format pairs�

���� F��
���� F��

��m� Fm�

�����
����

requires resources�
R�of Resource �
R�of Resource �
Rnof Resource N

Figure 	
� Mapping of mathematical terms to an application�

We assume that for every application j� which requires a collection of data

D� there is a time TD�j after which the data is no longer required� For example� a

commander may be using a planning tool that requires both logistical information

from a database and a video of a target location� The target is to be assaulted at

��

� one hour from now� If the commander receives the data after the assault� it is

useless� In this example�

� j is the planning tool�

� D is the video and database information� and

��

� TD�j is ��

�

If the deadline TD�j cannot be met� and application j is written so as to be

able to accept di
erent formats of the data� then a di
erent format� F��D�j� F��D�j� ��� or

Fm�D�j �where the number of formats� m� depend on D and j�� in which the data can

be supplied could be sent to the commander� For example�

� F��D�j� full video and database information

� F��D�j� color pictures and database information

� F��D�j� black and white pictures and database information

� F��D�j� database information

When it is obvious which application j and which data itemD we are referring

to� we will simplify our notation and use only T � Fi� and Fm to refer to the deadline�

the ith format� and the last format� respectfully� We associate with each format� Fi�

a normalized priority� �i� that re�ects the desirability of that format� The sum of

the normalized priorities for all of the di
erent formats of the same data is �� For

example� an application may accept data in one of two di
erent formats where their

normalized priorities are �� and ��� meaning that the �rst format is much preferable

to the second� In another case� the di
erent priorities might be each ��� meaning that

the application does not care which format it receives�

Next we assume that each application j has a priority Pj � that re�ects its

importance and that of its user with respect to other applications and their users�

Without loss of generality� we will assume that the priorities range between
 and N �

with
 being the highest priority�

Di
erent amounts�types of resources may be needed to acquire � di
erent

formats� For example F� may require 	
 minutes of CPU time� ��MB of temporary

hard disk storage and �� minutes of the network resource at � Mbits�second� On the

other hand� F� will have di
erent requirements� perhaps needing only �� minutes of

CPU time� � MBytes of temporary hard disk storage and �
 minutes of a network

��

resource at � Mbits�second� We assume that the di
erent formats are resource�

predictable� By this we mean that it is possible to obtain meaningful distributions

that allow us to estimate how much of a given resource will be needed to deliver

each format� The variance for these distributions may be small for some resources

and applications �both because the underlying distribution has a small variance and

because enough good sample data is available to accurately estimate the distribution��

For other distributions� the variance might be very large�

During the delivery of format Fi� we track the amount� RK � of resource K that

is used� using a function M�i�j�K�� Function M�i�j�K� indicates the amount of resource

K that was used in an attempt to deliver format Fi to application j�

For a data item to have been successfully received� one of its formats must be

received in its entirety before time T � That is� from the standpoint of the application�

a format that is only partially received is equivalent to not having received the data

at all� For example� if an application receives only half of format F�� two�thirds of the

format F�� and nothing else� that is equivalent to the application not receiving any

data� We therefore de�ne a characteristic function� The value of the characteristic

function� Xi�j � is � for application j� format i� if Fi has been delivered� in its entirety�

to application j� and is
 otherwise� An application may want to deliver F�� which

would require �
 minutes of CPU time� so Rcpu �
� If the entire �le is delivered

before deadline T � then�

� M��j�cpu �
 ��
 minutes of CPU time used� and

� X��j � ��le completely delivered��

Another assumption that we make is that the environment can have multiple

modes� For example� two such modes may be normal and critical� In normal mode�

it might be just as important to send ten priority � messages �from the soldier in

the �eld� as to send one priority
 message �from the Commander�� whereas in the

critical mode the single priority
 message �from the Commander� might be much

more important than any number of priority � messages� Therefore� we associate

�	

a function with each mode� call it Imode� that will be applied to priorities Pj � We

assume that Inormal is the identity function� As this function is domain speci�c� we do

not de�ne it further in this thesis� We only note that our architecture must support

applications in domains where such priorities exist�

Given today�s extensive use of networks and distributed computing� we must

assume that resources are concurrently shared� By this we mean that at any point

in time� multiple new requests may start to use a particular resource and other already

existing requests may need additional use of that resource�

Associated with each resource� K� there is a total amount of that resource that

can be used until deadline T � namelyUK�T � For example� it is estimated that a network

is providing �Mbit�sec of throughput� and this throughput will remain steady for the

next �
 minutes� An application has just �nished processing a large database request

��

 MBytes� and wishes to transmit the results to the requestor� The application has

a deadline � minutes from the current time� From this data� the following calculations

can be made�

� T T� �current time� � ��
 seconds

� Rnetwork �

 MBytes ��Mbit�Byte ��

 Mbit total throughput required

� Unetwork�T ��
 seconds ! �Mbit�sec ��

 Mbit available throughput

Since Rnetwork � Unetwork�T � this application will likely meet its deadline T �

Additionally we note that there are resources which are not dependent upon T � The

quantity of those resources� such as main memory and disk space� that is available

does not grow over a period of time� If there is a total of �GB of disk space� then

	 hours from now there is still �GB �unless a new hard drive is purchased�� This

is unlike the network resource above� where longer use gets more work accomplished

over time�

Stated more formally� ideally the problem that we wish to solve is� when given

n applications� to maximize

��

nX
j��

Imode�Pj�
mjX
i��

pi�jXi�j

subject to

�j
mjX
i��

Xi�j � �

and

�k�
nX

j��

mjX
i��

Mi�j�k � UK�T where T is the max�T�
�

Finally� not all applications that use the shared resources� such as �le servers

or networks� will go through our software architecture� This is among our most

important assumptions� Though these other applications will not use our software

architecture as an interface to the resources that are shared� the very fact that they

use those resources means that they will a
ect the performance of our applications�

Our architecture must therefore provide a means to measure such use�

�We must account for two di�erent types of penalties that are associated with di�erent types of

resources� The �rst is a penalty that will decrease resource availability due to sharing resources� such

as the context switches that must occur when switching the task a processor is executing� The second

penalty makes a resource�s availabilty seem larger than it is physically� such as virtual memory�

��

��

VII� PROPOSED ARCHITECTURE

SOLUTION

In this chapter we suggest a client�server architecture to support adaptive

applications� In particular� our proposed architecture will

� permit the easy integration of scheduling heuristics that attempt to solve the
optimization problem that we described in the last chapter�

� provide accurate estimates of resource status to the heuristic algorithms� and

� provide accurate estimates of resources required to compute and�or deliver
requested formats�

The latter � estimates are required to supply inputs for the scheduling heuristics�

Our proposed architecture solution borrows from existing systems such as

Condor �Ref� ��� and SmartNet �Ref� ���� recent research in real time network proto�

cols that use reservations �Ref� �	� ��� ��� ��� �see Appendix H�� and protocols that

are used to transmit wavelets for virtual reality distribution �Ref� ����

Our new architecture consists of a client library with which the applications

link and possibly replicated servers with which the library functions interact� The

library aids the application writer by

� hiding the complications of adaptation�

� performing interactions with the servers� and

� solving the problems associated with detecting the current loads on the shared
resources�

The servers permit users of di
erent priority� each requiring di
erent qualities

of service� to share the resources as the designers and administrators intended� They

also provide a damping e
ect that prevents rapid oscillations between attempts to

deliver di
erent size formats of data when the resources become heavily loaded� Before

presenting the details of our architecture� we �rst present an overview of it�

��

A� OVERVIEW OF OUR ARCHITECTURE

Our architecture consists of a library with which the client links and several�

possibly replicated� possibly integrated� servers as shown in Figure 	�� Both adaptive

Application

client
library

Resource Requirement

Database

Resource Status

Server
Scheduling

ServerQuery/Response

Query/Response

Query/Response
Update

Update

Call

Back

Call/Back

Figure 	�� Overview of proposed architecture�

and non�adaptive applications can link with our library� which provides three di
erent

functionalities� ��� to transparently attempt to deliver the best possible format for

each adaptive application that links with it� ��� to determine the resource needs of

applications with which it is linked� and �	� to attempt to ascertain the current load

on the various resources that it may need to use�

Below� we describe three di
erent servers because there are three di
erent

functionalities that must be embodied in the servers� However� it is conceivable that

in di
erent installations the di
erent services might be combined into a single physical

server� or that some of the services might be replicated while others are not�

The purpose of the client library that is linked with both adaptive� as well as

non�adaptive� applications is to provide an easy�to�use interface to all of the services�

The job of the Resource Status Server is to maintain a quickly changing database of

estimated loads on the various resources� The Resource Requirement Database helps

determine what resources are required to deliver�calculate the di
erent formats� The

�nal server� the Scheduling Server� helps to arbitrate the use of the various resources

��

by the di
erent clients in an attempt to maximize the optimization criteria described at

the end of Chapter VI� subject to the constraints� also enumerated there� It is beyond

the scope of this thesis to consider which scheduling heuristics may produce the best

schedule� this thesis concentrates instead on ensuring that the information needed for

executing those scheduling heuristics is supplied by the remaining components of our

architecture� We now describe each of the components in some detail� Their detailed

design and implementation are currently underway�

B� THE CLIENT LIBRARY

One of the purposes of the client library is to transparently attempt� with the

help of the various servers� to deliver the best possible format for each application

that links with it� That is� an application should only be required to furnish a list of

formats in which data from a task is acceptable� a normalized priority for each format�

and an optional time after which the data is no longer required� The client application

should receive either a success or failure response from the library when this function

call �nishes� A successful response includes both an acknowledgment of the complete

acquisition of one of the formats and an indication to the application concerning which

of the formats succeeded� A failure indicates that none of the formats was able to be

acquired��

Upon reception of a request from an application to obtain one of the given set

of formats� the client library will contact the Scheduling Server to determine which

of the formats it should attempt to acquire� After receiving a response from the

Scheduling Server� the client library� on behalf of the client application� will attempt

to acquire the speci�ed format� If the status of the resources changes dramatically� the

Scheduling Server will issue a call back to the client library indicating that another

format would be more appropriate� Additionally� if the client library perceives that

the mix of resources required to obtain the format is substantially di
erent from that

�A failure to acquire any format of the data by a given deadline is also considered a failure�

��

predicted using the Resource Requirement Database� or it perceives that the load

on a resource is substantially di
erent from that estimated by the Resource Status

Server� it will notify the Scheduling Server �which may later call back with a request

to acquire a di
erent format��

Another purpose of the client library� when linked with either an adaptive or

a non�adaptive client� is to ascertain both the resource requirements of various tasks

and perceived loads on those resources� In order to estimate these quantities� our

architecture will wrap system calls in some light weight code that estimates both of

these quantities and periodically updates both the Resource Requirement Database

and the Resource Status Server� We currently intend to implement the system call

wraps using the Synthetix Toolkit available from the Oregon Graduate Institute �Ref�

��� so that very little overhead will be added to the call�

C� RESOURCE STATUS SERVER

The job of the Resource Status Server�s� is to maintain a quickly changing

database of estimated loads on the various resources� In our distributed architecture�

we have one Resource Status Server responsible for each shared resource� or� in some

situations� a single server may be responsible for an entire set of shared resources�

This server is passive� that is� it does not actively use the resources for which it is

responsible� We made this design decision because of the incredible load �overhead�

that an active server would place on some shared resources� For example� some re�

sources� such as networks� are extremely hard to actively monitor� requiring a high

rate of sampling� Such a substantial stress on a resource might prevent any real work

from being accomplished by applications that use the resource� This can be partic�

ularly harmful if the system is already in a critical mode �extremely busy�� Instead�

our passive server collects information from the client libraries� As the client libraries

use the resources to do actual work� relevant statistics are sent to the appropriate

Resource Status Server� requiring very little overhead�

�

In addition to maintaining this repository of information� the Resource Status

Server�s� answer queries from the Scheduling Server� When a client library makes

a request to obtain one of several formats to the Scheduling Server� the Scheduling

Server queries the various Resource Status Server�s� to determine the loads on the

resources that might be useful in obtaining each format�

A typical sequence of events that might be executed by a Resource Status

Server follows� First the Scheduling Server� operating on behalf of a client applica�

tion� will use QueryStatus�Resource� to obtain an initial estimate of the load that

particular resource is experiencing �Figure 	���

QueryStatus Call

Current resource load based on historical data

SCHEDULING

SERVER

RESOURCE

STATUS

SERVER

Figure 	�� Resource Status Server receiving QueryStatus�� call�

Once a scheduling decision is made� the Scheduling Server informs the Resource

Status Server�s� of the additional loads that it expects the client application to place on

the various resources� During execution of the work� the client library will periodically

update the server on its experience with each particular resource� as shown in Figure

		� The call used here will be UpdateServer�ResourceStatus��

client

LIBRARY
UpdateServer call

(5Mbs throughput on a network link for example)

information.

RESOURCE

SERVER

STATUS

Server records historical

Figure 		� Resource server receiving UpdateServer�� call�

��

Because the Resource Status Server�s� are informed by many clients concerning

the status of the resources� our servers can detect when di
erent modes� such as

normal and critical have been entered� Our servers use a stochastic generalization

of the Kalman Filter �Ref� ��� to determine the mode� They can then adjust the

priorities of di
erent requests based upon this mode and can alter the advice given

to their clients when they detect a change in the mode�

We note that our architecture does not rely upon all of the users of a resource

to inform that resource�s status server of their use� In fact� part of the job of the

client library is to dynamically detect how much of each resource remains available

for allocation and to inform the Resource Status Server of any changes�

D� RESOURCE REQUIREMENT DATABASE

Much of the Resource Requirement Database is modeled after SmartNet�s wall

clock time database �Ref� �
� that keeps track of the amount of time required to

execute compute�intensive tasks on various high performance computers� However�

our proposed Resource Requirement Database maintains more �ne granularity data�

such as the amount of main memory and cache required for e�cient execution� as

well as the amount of �le service needed� Like the Resource Status Server� this

database is updated by the client libraries and queried by the Scheduling Server�

Like the SmartNet wall clock time database� this database leverages the advantage of

using Compute Characteristics �Ref� ���� This database is updated when tasks are

completed�

E� THE SCHEDULING SERVER

The Scheduling Server contains many heuristics that can be useful in scheduling

prioritized tasks in a heterogeneous environment� The Client Library contacts the

Scheduling Server to determine which of a variety of formats of data it should attempt

to acquire� The Scheduling Server �rst queries the Resource Requirement Database to

��

determine an estimate of the resources required to acquire and�or compute each of the

di
erent formats and then contacts the Resource Status Server to determine the load on

each of the resources that might possibly be used to obtain any of the formats� Based

upon other activity and the various priorities in the system� the Scheduling Server

then responds to the client library to indicate� which format the client library should

attempt to acquire� which resources it should use to acquire that format� and the

current estimate of the loads on each of those resources� It then noti�es the Resource

Status Server of the load that the client is expected to place on these resources�

If the Scheduling Server should later receive a call back from the Resource

Status Server� indicating a substantial change in the load on a resource that a client is

using� it will re�calculate the schedule to determine whether any client should acquire

a di
erent format from that which it is currently acquiring� If it determines that

a change is required� the Scheduling Server will then issue a call back to the client

library�

In addition to possibly receiving a call back from the Resource Status Server�

the Scheduling Server may receive a noti�cation from the client library indicating

either that the load on a resource was substantially di
erent from predicted or that the

resource requirements were substantially di
erent from the predictions� In this case�

also� the Scheduling Server may need to re�calculate and disseminate new schedules

to various clients�

F� PRIORITY MODELS AND ECONOMIC MODELS

Finally� we note the di
erence between our priority model� the model of choice

for both military and internal corporate use� and an economic model� likely the model

of choice for commercial users and therefore� likely� the direction that COTS applica�

tions will go� An economic model can coexist with our priority model using something

similar to Figure 	�� The major di
erence between the two�tiered priority model that

we have already described� wherein an application has a priority and it prioritizes its

�	

own demand� and an economic model� where di
erent applications have a di
erent

amount of money and are willing to pay a di
erent price for di
erent qualities of

service� is replenishment� In our model� we do not need to be concerned with whether

a client is replenished� If an economic model were to be used on top of what we have

already described� an additional library to establish priorities� based upon a budget�

would have to be developed� As the application spends its budget� the priority it could

purchase would decrease until its budget is replenished�

Client

Client

MODEL

PRIORITY

Convert

to priorities
Priority policy

Economic Policy

Figure 	�� Using an economic model with our priority model�

��

VIII� SUMMARY

An adaptive application is one that can accept or send multiple forms of the

same data� and chooses which to send based upon resource loads� For example�

if a video �le is too large to reach its destination by a given time� due to a heavily

loaded compute environment� then an application may choose to send black and white

pictures instead� In our applications� if the data is not delivered by its deadline� the

data becomes useless� In order to correctly decide which format to send� however� an

application must know what the load is on all the resources it intends to use�

Developing an adaptive application that automatically schedules VTC sessions

and disseminates conference information requires that the application have accurate

knowledge of the loads on the resources that it uses� The current implementation of

the JTF Architecture provides a Communications Server that estimates the load of

the network resource� Our original intent was to use this server when delivering data

such as video �les� database information� and large text �les to participants in a VTC�

A� SUMMARY OF OUR EARLY EXPERIENCES

In order to become familiar with the structure and the objects of the JTF

Reference Architecture� we initially wrote many test programs� With our extensive

knowledge of C�� programming� it took us only a month to become familiar with the

entire JTF Reference Architecture�s structure of services� The reuse of objects was

easy� as was described in the use of the Trigger and Worklow objects in Chapter III�

We encountered problems with only the Communications Server�

In order to learn the capabilities of the currently implemented JTF ATD Com�

munications Server� we ran several tests and experimented with many of its functions

that are identi�ed in its Interface De�nition Language� Initially we had several prob�

lems gaining access to the Communications Server object� Several weeks were spent

con�guring scripts to automatically start the Communications Server correctly in the

��

CORBA environment� Based on these problems� we have concluded that the CORBA

environment is very administratively intense� and that this situation needs to be alle�

viated if the software is to be used in a crisis situation�

We soon discovered that the CS CommServer RequestQoS function was the

only one that returned anything back to the client� and focused the rest of our experi�

ments on it� Our initial approach was to pass the function di
erent Quality of Service

�QoS� parameters� repeatedly requesting additional throughput� Unfortunately� the

Communications Server never reacted to these changing input parameters� After dis�

cussing this with the Communications Server�s implementors� we discovered that the

input parameters were not currently used to calculate the QoS for the network re�

source�

We then ran several test programs to determine how accurately the raw meas�

urements �that the Communications Server was returning� were at predicting the ac�

tual load on the network� Unfortunately� our results showed that the values did not

accurately re�ect the load that we were placing on the network� There are several

reasons why the current Communications Server implementation does not completely

re�ect the load on the network� First� the values that are returned are instantaneously

collected� Due to the bursty nature of network tra�c� the Communications Server

was sometimes reporting the statistics at a busy instant in time� when� in reality� the

average load on the network was light� Also� the opposite occurred� wherein a low

point was sampled when the network was in fact quite busy� Unfortunately� the Com�

munications Server coupled this problem with not keeping a history of recent sample

information� Second� even network�intensive applications use additional resources be�

sides the network� such as CPU� memory� and hard drives� whose loads must also be

considered� Based both on these discoveries and our simulation results� we developed

a proposed client�server architecture that should provide adaptive applications with a

better estimate of resource loads�

��

B� SIMULATIONSDETERMINING SERVER ACCURACY

We ran several simulations that modeled only the network resource� We simu�

lated two di
erent modes� one when the network was heavily loaded �crisis situation��

and one where the network was more lightly loaded �normal use�� Among other stat�

istics� we recorded the number of messages that did not arrive before their speci�ed

deadline�

In crisis mode� our results showed that a resource server that could accurately

estimate the actual network throughput within � Kbits�second would always deliver at

least ��� of the data before its deadline� On the other hand� an intrusive server� such

as the Communications Server� had a failure rate between ��� and 	
�� We note that

the adaptive applications that used the Communications Server did well compared to

those that did not adapt at all� which produced a ��� failure rate�

C� A PROPOSED ARCHITECTURE TO SUPPORT AD�

APTIVE APPLICATIONS

Our proposed architecture is generic in that it attempts to accurately estimate

the loads on many di
erent types of resources so that it can e
ectively support adapt�

ive applications� Our proposed architecture uses a library of functions that execute

on behalf of the application� The application initiates a call to the library� telling

the library what type of service it requires� The library then performs the work of

adapting to resource loads and performing� in some form� the work requested� Once

the work is completed� the library informs the application how successful it was and

passes any requested data to the application�

Our library communicates with a collection of servers to gain an estimate of

the current load on the resources it wishes to use� Once the library receives these

estimates� a Scheduling Server calculates which forms of data the client application

should be able to successfully calculate and�or acquire given the speci�c deadline of

that application� As the library sends or receives the data� it periodically determines

��

the QoS it is receiving and updates the appropriate Resource Status Servers�

Our Resource Status Servers are not intrusive� They receive resource load es�

timates from the libraries that are actually using the resources� In addition to tracking

the loads on resources� a Scheduling Server helps determine the proper allocation of

resources� Based on the priority of an application� it may receive greater use of a

resource in a crisis situation if it has a high priority� or be asked to reduce its resource

use if it has a low priority�

In order to accurately schedule resources for particular tasks� the Resource

Requirement Database communicates resource needs of the tasks to the Scheduling

Server� The Resource Requirement Database receives updates from the client library

on the speci�c amount of memory� cache� and other resources that a task used� When

a client application completes a task� this information is added to the database to

provide better resource use estimates for scheduling the task in the future�

D� CONCLUSIONS AND FUTURE WORK

In a military environment� handling the crisis situation is vital� In this thesis�

we show through simulation that� in a crisis situation� very accurate resource loading

information is required to permit applications to adapt and� in particular� to ensure

that the highest priority applications receive su�cient resources� We propose an

architecture to support adaptive applications in these situations�

Future work is required to continue to re�ne our proposed architecture� This

re�nement will require prototype implementations of both our client library and our

proposed servers� Additional simulations should be run using more nodes� network

routing� varying the weights on how instantaneous readings are recorded� and then

incorporating other resources such as CPUs� memory� and hard drives� To ensure

that applications which will be useful in crisis military situations can be built from

COTS software� a mapping from an economic model to a priority based model will

also be needed�

��

APPENDIX A� C�� CODE FOR THE

VTCAGENT

��������������������������vtcagent�C��������������

��This is the main program that is starts the vtcagent

��

�include �util�h�

��This trigger is activated when a new tasker is assigned to the user

void c�WorkflowUser		trigger�char
 reason� c�NameValues�var� info�

C�SchemaObject		trigger�reason� info��

for �int i��� i � this��taskers��length� i���

if ��strcmp�user��taskers�counter���what��headers����TASK�TYPE�� �� ��

actOnVTC�user��taskers�counter���what�user��

�

�

�

int main �int argc� char

argv�

char
user�name � NULL�

if �argc � ��

cerr �� �Usage	�n�t� �� argv��� �� � �user�host��n��

return ��

�

if �argc � ��

user�name � argv����

�

XtAppContext app�

XtAppInitialize��app� �MyAppClass�� NULL� �� �argc� argv� NULL� NULL� ���

X�FineC��Trigger�API trigger�app�� ��this is what binds to the

��Socket�Trigger�Server

finec��default�trigger � � trigger�info� ��from finec��h

��

��this binds to the Workflow Server

c�WorkflowDirectory		get��� �trigger��

c�WorkflowIdentity
user � c�WorkflowUser		my�identity�user�name��

char
Dir � new char������

Dir � getenv��HOME���

strcat�Dir�VTC�DIR��

��checks to see if directory is there� if not make it�

checkVTCDir�Dir��

��go through all user�s taskers to see if it is a VTC and we need to act

for �int counter � �� counter � user��taskers��length� counter���

if ��strcmp�user��taskers�counter���what��headers����TASK�TYPE�� �� ��

actOnVTC�user��taskers�counter���what�user��

�

�

��wait for something to happen

XtAppMainLoop�app��

return ��

�

��������������������������util�C��������������

��This file contains utility functions that are part

��of the vtcagent

��

�include �util�h�

string�hash sessions� ��holds VTC taskers that we know about

char
User�Dir� new char������ ��holds the name of user�s local VTC directory

�

��checks to see if a directory exists� if not it makes it� The first

��time through is when we get the user�s VTC directory�

��From then on� we don�t have to do this�

��Directory is made if it does not exist with the Dir name that is passed in

��Returns � if we make a directory� � if it already existed�

int checkVTCDir�FineC��string Dir�

static int counter � ��

int status�

struct stat statbuf�

��First time through� get user directory

if �counter �� ��

strcpy�User�Dir� Dir��

counter���

�

��Check to see if VTC directory exists� if not make it and notify

if ��status � stat�Dir� �statbuf���

mkdir�Dir�������

�

return status�

�

��if the tasker has not been seen yet� add it to the hash table

��This function make it quicker to look up� instead of a linked list

��returns a � if we insert a new one� a � if it was already here�

int addToHash�c�WorkflowTasker
tasker� FineC��string �name�

int status � ��

if ��sessions�lookup�name��

sessions�set�finec��strdup�name�� �char
�tasker��

status � ��

�

return status�

�

��

��creates a session name for the TASK�TYPE being tracked

��This is a unique name based on the originator and subject�date

void getSessionName�c�WorkflowTasker
tasker� FineC��string �name�

FineC��string temp�

int length�templen� counter�

if �strlen�tasker��headers���� �� ��

length � strlen�tasker��tasked�by��print�name� �

strlen�tasker��headers���� � �� ��add the ��� and the ���� � �

name � new FineC��char�length��

strcpy�name�tasker��tasked�by��print�name��

strcat�name������

temp � new FineC��char�strlen�tasker��headers��������

��replace spaces with uderscores

for �counter � �� counter � strlen�tasker��headers�����counter���

if �
�tasker��headers���� counter� �� � ��

temp�counter� � ����

�

else

temp�counter� �
�tasker��headers���� counter��

�

�

strcat�name�temp��

�

else

length � strlen�tasker��tasked�by��print�name� �

strlen�tasker��headers���� � �� ��add the ��� and the ���� � �

name � new FineC��char�length��

strcpy�name�tasker��tasked�by��print�name��

strcat�name������

temp � new FineC��char�strlen�tasker��headers��������

��replace spaces with uderscores

for �counter � �� counter � strlen�tasker��headers�����counter���

if �
�tasker��headers���� counter� �� � ��

temp�counter� � ����

�

else

��

temp�counter� �
�tasker��headers���� counter��

�

�

temp�counter� � �����

strcat�name�temp��

delete temp�

�

�

��if there are any attachments� exec a process that will distribute the files

void distribFiles�c�WorkflowTasker
tasker�char
responsible�

char
host�

char
reference�

pid�t parent�child� ��process ids for the parent and child

host � strtok�responsible������

host � strtok�NULL������

��if responsible does not have host� use the one from this host

if �host �� NULL�

strcpy�responsible��jtfweb���� ��fix this for any host

host � responsible�

�

��if there are attachments� distribute them

if �tasker��attachments��length � ��

for �int ix � �� ix � tasker��attachments��length� ix���

CORBA		String�var oref �

tasker��attachments�ix���object��corba�objref���object�to�string���

reference � new char�strlen�oref�����

strcpy�reference�oref��

parent � getpid���

child � fork���

if �child �� ��

execl��mysend���mysend��host�reference�tasker��attachments�ix���name�

�char
����

�	

�

delete reference�

�

�

return�

�

��Create a status file for this tasker� tracking which files have been

��ditributed and any other needed info� Places it in the users

��Planner�VTC Directory

void initOwnerFile�FineC��string �filename�c�WorkflowTasker
tasker�

int status� length�

struct stat statbuf�

FineC��string tempPath � NULL�

ofstream session�file�

length � strlen�filename� � strlen�User�Dir� � ��

tempPath � new char�length��

strcpy�tempPath�User�Dir��

strcat�tempPath������

strcat�tempPath�filename��

��if it is not there� make it

if ��status � stat�tempPath� �statbuf���

session�file�open�tempPath� ios		out��

for �int ix � �� ix � tasker��attachments��length� ix���

session�file��tasker��attachments�ix���name��� ����endl�

�

��need to put stuff in it to initialize add function to place attachments

��place �attachments� etc����

session�file�close���

�

�

��

��When a VTC task is found� figure out what to do with it

��If it is a new one� then make directory and add time to list�

��If this user is the originator� distribute attachments� else�

��get ready to receive

��files if there are any�

void actOnVTC�c�WorkflowTasker
tasker� c�WorkflowIdentity
user�

FineC��string session�name � NULL� ��holds the session name

FineC��string status�file � NULL� ��holds name of status file

int length� counter � ��

getSessionName�tasker�session�name��

length � strlen�session�name����

status�file � new char�length��

FineC��string responsible �

new char�strlen�tasker��responsible��print�name�����

strcpy�responsible�tasker��responsible��print�name��

status�file��� � ����

for �counter� counter � length�counter���

status�file�counter� �
�session�name � counter����

�

status�file�counter� � �����

��add to a hash table� quick to look up for future reference

if �addToHash�tasker�session�name��

if �strcmp�tasker��tasked�by��print�name�user��print�name�����

initOwnerFile�status�file�tasker��

distribFiles�tasker�responsible��

�

delete �� session�name�

�

��

��

APPENDIX B� DIFFICULTIES EXPERIENCED

WHILE ACCESSING THE COMMUNICATIONS

SERVER

When we initially attempted to run the example code presented in Chapter IV�

we received an error that told us that we had no permission to use the CommServer

object� After exchanging several emails with BBN� we discovered that the CORBA

settings for the Communications Server were set to�

Server details for server � CommServer

Comms � tcp

Code � xdr

Activation � shared

Owner � root

Launch � �

Invoke � �

These settings showed that no client could launch or invoke the Communic�

ations Server� After the system administrator changed the settings for Launch and

Invoke to �all�� we could run our test program with success�

When we ran our simple test program from above� we received a response from

the Communications Server� Here is some sample output�

���	�� New Connection �jtfweb��IT�daemon���root�pid�	���optimised� �

���	�� New Connection �jtfweb��CommServer���jpkresho�pid�	��	��optimised� �

From the above output� we see that CORBA found the CommServer object on the

jtfweb� computer� along with the user that invoked it �jpkresho in this case��

Unfortunately� after this initial successful access to the Communications Server�

there still have beenmany days in which we could not access it� Whenever the compute

server is rebooted� several con�guration scripts must be run by an administrator in

order for us to access the Communications Server again� These scripts start the server

and gather initial data�

��

��

APPENDIX C� C�� CODE FOR FIRST SET OF

FILE TRANSFER TESTS

���������������������������sendutils�h������������������������

�include �sys�types�h�

�include �sys�socket�h�

�include �sys�errno�h�

�include �netinet�in�h�

�include �netdb�h�

�include �stdio�h�

�include �ctype�h�

�include �stdlib�h�

�include �string�h�

�include �iostream�h�

�include �unistd�h�

�include �fcntl�h�

�define PORT�MAX ��

extern �C� int gethostname�char
name� int namelen��

��gets the port for the data connection

int get�port�char
�char
�int��

��sends command over a socket

int sendcmd�int� char
� char
��

��gets reply from a socket

int getreply�int� char
��

��get the IP address and the port number� then put it into a string

void getThisIP�char
charPtr�char
� char
�char
thisIP��

���������������������������sendutils�C������������������������

��Utility functions to help ftpsend�C do it job

��

��

�include �sendutils�h�

��gets the port for the data connection

int get�port�char
port�save��char
port�save��int socknum�

char reply��� ��

char
cp�
start� digit����

int num� totlen� commas���ps����ps����

if �write�socknum��PASV�n���� � ��

perror��write�����

return ����

�

if �read�socknum�reply��� � � ��

perror��read�����

return ����

�

�� Position cp on first digit

for �cp � �reply���� �
cp� �� �isdigit�
cp�� cp�� � �

start � cp�

num � ��

for �totlen�� � � cp��� totlen���

if ���
cp� !!
cp �� ��� !!
cp �� ��� !!
cp �� � ��

if �num � ����

return����

else

if �
cp �� ����

commas���

�

num � ��

�

�

else

��save the first " bits of the port

if �commas �� ��

port�save��ps�� �
cp�

ps����

�

�

��save the second " bits of the port

if �commas �� ��

port�save��ps�� �
cp�

ps����

�

strncpy�digit� cp� ���

digit��� � �����

if �isdigit�digit�����

num � �num
��� � atoi�digit��

else

return����

�

if ���
cp� !!
cp �� ����

port�save��ps��������

port�save��ps��������

break�

�

�

if ��totlen���� !! �totlen �� PORT�MAX��

return����

else

return����

�

�

��the command must come in as �command #s�n�� then command is sent to

��distant end

int sendcmd�int socknum� char
command� char
arg�

char cmdbuff��� ��

sprintf�cmdbuff�command�arg��

if �write�socknum�cmdbuff�strlen�cmdbuff�� � ��

perror��write�����

return ��

�

return ��

�
�

�

��this is used just to get the reply out of the buffer for the socket

int getreply�int socknum� char
replybuf�

if �read�socknum�replybuf������ � � �

perror��read�����

return ���

�

return ��

�

��takes strings which contain an IP address and port combination and

��combines them into a single string for output in the PORT commmand

void getThisIP�char
charPtr�char
port��char
port��char
thisIP�

�define UC�b� ���int�b���xff�

sprintf�thisIP��#d�#d�#d�#d�#s�#s�� UC�charPtr�����UC�charPtr�����

UC�charPtr�����UC�charPtr�$���port��port���

�

���������������������������ftpsend�C������������������������

��Connects to ftp port and transfers files from one machine to another

��This version reads the file from disk each time it is transferred

��

�include �sendutils�h�

�define PORTNO �� ��well known ftp port for command connection

�define USER �user� ��this is where a login name would go

�define PASS ����
�%� ��password for this user� a little dangerous

main�int argc� char

argv�

�
�

int socknum� ��socket for the command connection

pid�t parent�child� ��process ids for the parent and child �data server�

struct hostent
hp� ��holds the information of the remote host

char buf�������

struct in�addr remote�address� ��used to connect to the remote host

struct in�addr this�address� ��used for the address of this host

char port�save����� ��first " bits of port

port�save����� ��second " bits of port�

union sock

struct sockaddr s�

struct sockaddr�in i�

�sock�

if �argc � $�

cerr���YOU NEED at least � arguments	 mysend destination file���endl�

return ���

�

��now setup the socket for connecting to the ftp port

socknum � socket�AF�INET� SOCK�STREAM� ���

hp � gethostbyname�argv�����

strncpy��char
��remote�address�hp��h�addr�list����sizeof�in�addr���

sock�i�sin�family � AF�INET�

sock�i�sin�port � htons�PORTNO��

sock�i�sin�addr � remote�address�

��connect to the socket and pass commands�get replys

if �connect�socknum� �sock�s� sizeof�sockaddr�� � ��

perror��connecting stream socket���

return�����

�

if ��getreply�socknum�buf��

return�����

�

��send user name

if ��sendcmd�socknum� �user #s�n�� USER��

return�����

�
	

�

if ��getreply�socknum�buf��

return�����

�

��now the password

if ��sendcmd�socknum� �pass #s�n�� PASS��

return�����

�

if ��getreply�socknum�buf��

return�����

�

��change to binary format for file transfer

if ��sendcmd�socknum� �type #s�n�� �i���

return�����

�

if ��getreply�socknum�buf��

return�����

�

��now get IP address for this host for the data connection

char thisHost�����

gethostname�thisHost�����

hp � gethostbyname�thisHost��

strncpy��char
��this�address�hp��h�addr�list���� sizeof�in�addr���

sock�i�sin�addr � this�address�

char thisIP�$���

char
charPtr � �char
��sock�i�sin�addr�

��loop for a number of time� currently set to �� but can be very large

��in order to sustain traffic on the net

for �int jx � �� jx ���� jx���

��for each file from the command line� copy to the destination

for �int ix � �� ix � argc� ix���

��ask the remote machine for a port

port�save����������

�
�

port�save����������

get�port�port�save��port�save��socknum��

getThisIP�charPtr�port�save��port�save��thisIP��

��now the PORT command

if ��sendcmd�socknum� �port #s�n�� thisIP� � ��

return�����

�

if ��getreply�socknum�buf��

return�����

�

parent � getpid���

child � fork���

��if the child� exec the server to accept the data connection

if �child �� ��

execl��dataconn���dataconn��port�save��port�save��argv�ix���char
����

�

int goid � open��go�txt��O�RDONLY��

��wait until the data connection is ready before going on

while �goid � ��

sleep����

goid � open��go�txt��O�RDONLY��

�

close�goid��

��now the stor

if ��sendcmd�socknum� �stor #s�n�� argv�ix�� � ��

return�����

�

if ��getreply�socknum�buf��

return�����

�

int doneId � open��done�txt��O�RDONLY��

��wait unitl data is transferred before moving on

while �doneId � ��

�
�

sleep����

doneId � open��done�txt��O�RDONLY��

�

close�doneId��

system��rm done�txt���

if ��getreply�socknum�buf��

return�����

�

if ��sendcmd�socknum� �dele #s�n�� argv�ix�� � ��

return�����

�

if ��getreply�socknum�buf��

return�����

�

���end inside for� individual file

���end of outside for� completed one set of files

close�socknum��

return ��

�

���������������������������server�h������������������������

�include �sys�types�h�

�include �sys�socket�h�

�include �sys�stat�h�

�include �fcntl�h�

�include �sys�errno�h�

�include �netinet�in�h�

�include �netdb�h�

�include �stdio�h�

�include �string�h�

�include �iostream�h�

�include �unistd�h�

�include �stdlib�h�

�include �sys�timeb�h�

�
�

��takes two strings and converts them into a port number �integer�

int get�port�char
� char
�int ���

extern �C� int gethostname�char
name� int namelen��

extern �C� int ftime�struct timeb
tp��

���������������������������dataconn�C������������������������

��Sends the actual data to the distant machine using the

��data connection established by ftpsend�C

���

�include �server�h�

const int NAME�SIZE � ���

main�int argc� char

argv�

int goId�

int datanum� portnum���

int length � NAME�SIZE�

struct hostent
hp�

char buf�������

char thisHost�NAME�SIZE��

struct in�addr this�address� accept�addr�

union sock

struct sockaddr s�

struct sockaddr�in i�

�sock�

get�port�argv����argv����portnum��

gethostname�thisHost�length��

hp � gethostbyname�thisHost��

strncpy��char
��this�address�hp��h�addr�list���� sizeof�in�addr���

sock�i�sin�port � htons�portnum��

sock�i�sin�addr � this�address�

�
�

datanum � socket�AF�INET� SOCK�STREAM� ���

��bind to a port on this machine

if �bind�datanum� �sock�s� sizeof�sockaddr�� � ��

perror��in the bind���

return�����

�

��now do the listen and wait for a connection

if �listen�datanum��� � ��

perror��in the listen���

return ���

�

else

��tell ftpsend�C it is OK to send the stor command

goId � creat��go�txt��������

�

int addr�len � sizeof�sockaddr��

��open the data connection when the other side attempts to connect

int test � accept�datanum��sock�s��addr�len��

if �test � ��

perror��in the accept���

return ���

�

else

close�goId��

system��rm go�txt���

�

int fileid�

struct stat fileStat�

stat�argv�$���fileStat��

char
file�buf � new char�fileStat�st�size����

fileid � open�argv�$��O�RDONLY��

read�fileid�file�buf�fileStat�st�size��

�
�

timeb
startTime � new timeb�

ftime�startTime�� ��start the timer

cout���This was the START time of ���argv�$����	 ���startTime��time��endl�

��send the file to the distant machine

if �write�test�file�buf�fileStat�st�size � � ��

cerr���Error in write���endl�

retrun ���

�

else

ftime�startTime��

cout���This was the FINISH timeof ���argv�$����	 ���startTime��time��endl�

close�datanum��

close�test��

int doneId � creat��done�txt��������

�

return ��

�

�
�

��

APPENDIX D� C�� CODE FOR SECOND SET

OF FILE TRANSFER TESTS

��������������������������side��C�����������������������

��Connects to the other side� then transfers a file to the other side�

��and receives it back� displaying the time it took for a roundtrip of the

��file� This conitnues until user interruption

��

�include �sys�types�h�

�include �sys�stat�h�

�include �sys�socket�h�

�include �sys�errno�h�

�include �netinet�in�h�

�include �netdb�h�

�include �stdio�h�

�include �ctype�h�

�include �stdlib�h�

�include �string�h�

�include �iostream�h�

�include �unistd�h�

�include �fcntl�h�

�include �sys�timeb�h�

�include �assert�h�

extern �C� int gethostname�char
name� int namelen��

extern �C� int ftime�struct timeb
tp��

main�int argc� char

argv�

int socknum�

struct hostent
hp� ��holds the information of the remote host

struct in�addr remote�address� ��used to connect to the remote host

double time�� ��start time in seconds using decimals for milli seconds

time�� ��end time in seconds using decimals for milli seconds

union sock

struct sockaddr s�

���

struct sockaddr�in i�

�sock�

if �argc �� ��

cerr���YOU NEED $ arguments	 side� destination file port���endl�

return ��

�

int len � ��

int total � ��counter ���

timeb
startTime � new timeb�

timeb
stopTime � new timeb�

int portnum � atoi�argv�$���

��now setup the socket for connecting to the transfer port

socknum � socket�AF�INET� SOCK�STREAM� ���

hp � gethostbyname�argv�����

strncpy��char
��remote�address�hp��h�addr�list����sizeof�in�addr���

sock�i�sin�family � AF�INET�

sock�i�sin�port � htons�portnum��

sock�i�sin�addr � remote�address�

��connect to side�

if �connect�socknum� �sock�s� sizeof�sockaddr�� � ��

perror��connecting stream socket���

return����

�

char
temp�buf � new char��������

int fileid�

struct stat fileStat�

stat�argv�����fileStat��

char
file�buf � new char�fileStat�st�size����

assert�file�buf �� NULL��

fileid � open�argv����O�RDONLY��

��read the entire file into a buffer

read�fileid�file�buf�fileStat�st�size��

���

close�fileid��

��now loop for a while� until user interrupts

while �total����

ftime�startTime�� ��start the timer

��transfer the file to the other side

if ��len�write�socknum�file�buf�fileStat�st�size �� � ��

perror��Error in write���

�

��now receive the same file back from the other side

while ��len�read�socknum�temp�buf������ �� � ��

total �� len�

if �total �� fileStat�st�size�

ftime�stopTime�� ��end of round trip

time� � startTime��time � �startTime��millitm���������

time� � stopTime��time � �stopTime��millitm���������

cout���Round trip ����counter���time was	 �

��time��time���endl�

break�

�

�

counter���

total � ��

�

close�socknum��

return ��

�

��������������������������side��C�����������������������

��Initally waits on a port until side� connects� It then

��receives a file from side� and sends it back�

��

�include �sys�types�h�

�include �sys�stat�h�

�include �sys�socket�h�

��	

�include �sys�errno�h�

�include �netinet�in�h�

�include �netdb�h�

�include �stdio�h�

�include �ctype�h�

�include �stdlib�h�

�include �string�h�

�include �iostream�h�

�include �unistd�h�

�include �fcntl�h�

�include �sys�timeb�h�

�include �assert�h�

extern �C� int gethostname�char
name� int namelen��

extern �C� int ftime�struct timeb
tp��

const int NAME�SIZE � ���

main�int argc� char

argv�

int datasock�

struct hostent
hp�

char thisHost�NAME�SIZE��

struct in�addr this�address�

double time�� ��start time in seconds using decimals for milli seconds

time�� ��end time in seconds using decimals for milli seconds

union sock

struct sockaddr s�

struct sockaddr�in i�

�sock�

if �argc �� $�

cerr���YOU NEED � arguments	 side� file port���endl�

return ��

�

���

int portnum � atoi�argv�����

gethostname�thisHost�NAME�SIZE��

hp � gethostbyname�thisHost��

strncpy��char
��this�address�hp��h�addr�list���� sizeof�in�addr���

sock�i�sin�port � htons�portnum��

sock�i�sin�addr � this�address�

datasock � socket�AF�INET� SOCK�STREAM� ���

int fileid�

struct stat fileStat�

stat�argv�����fileStat��

char
file�buf � new char�fileStat�st�size����

fileid � open�argv����O�RDONLY��

��read the initial file into a buffer

read�fileid�file�buf�fileStat�st�size��

close�fileid��

��bind to a port given at the command line

if �bind�datasock� �sock�s� sizeof�sockaddr�� � ��

perror��in the bind���

return������

�

��now do the listen� waiting for side� to connect

if �listen�datasock��� � ��

perror��in the listen���

return ����

�

else

cerr���Doing a listen on socket	 ���datasock��� for host ���thisHost��endl�

�

int addr�len � sizeof�sockaddr��

��side� connects

int test � accept�datasock��sock�s��addr�len��

if �test � ��

���

perror��in the accept���

return ���

�

int len � ��

int total � �� counter � ��

timeb
startTime � new timeb�

timeb
stopTime � new timeb�

char
temp�buf � new char��������

��now loop for a while� waiting for user interruption

while �total �� ��

ftime�startTime�� ��start the timer

��read the file from side�

while ��len � read�test�temp�buf������� � � ��

total �� len�

if �total �� fileStat�st�size�

break�

�

�

��send the file to side�

if ��len � write�test�file�buf�fileStat�st�size �� � ��

perror��Error in write���

return ���

�

else

ftime�stopTime�� ��round trip over

time� � startTime��time � �startTime��millitm���������

time� � stopTime��time � �stopTime��millitm���������

cout���Round trip ����counter���time was	 ���time��time���endl�

�

counter���

total���

�

close�test��

return ��

�

���

APPENDIX E� C�� CODE FOR COMM SERVER

STATISTIC REPORTING

���������������������������commserver�C�����������

��This is to test a binding to the CommSrv

��and output QoS stats

��

�include �comsrv�hh�

�include �iostream�h�

�include �stdlib�h�

�include �unistd�h�

�include �sys�types�h�

�include �sys�timeb�h�

extern �C� int ftime�struct timeb
tp��

main ��

CS�CommServer�var cs� ��pointer to Comm Server

CS�Endpoint here� there� ��endpoints

CS�Flowspec flow� ��flow spec structure

CS�QOS nqos� ��holds the QoS

here�CSE�ipaddr � �x"�$�"��$� ��jtfweb$

here�CSE�id � ��

there�CSE�ipaddr � �x"�$�"���� ��jtfweb�

there�CSE�id � ��

��Found that this is not currently used in the Comm Server

flow�CSF�type � CS�sp�singlexfer� �� type of service path

flow�CSF�dataRate � ������� �� bandwidth of data flow �bps�

flow�CSF�packetLength � "���� �� Maximum length of packets �bytes�

flow�CSF�totalData � ������ �� Total data to be transferred �Kb�

timeb
startTime � new timeb�

��bind to Comm Server

try

���

cs � CS�CommServer		�bind ��	CommServer������

�

catch �CORBA		SystemException� se�

cerr ���Bind to CommServer failed	 ��

cerr ���unexpected exception� �� endl ��se�id�� ��endl�

exit�����

�

cout���Got commserver	 ���endl ��cs���object�to�string�� ��endl�

��loop for as many time as needed for� each loop is about ��seconds

for �int ix � �� ix � ��� ix���

��get the QoS from the Comm Server

try

nqos � cs��CS�CommServer�RequestQoS �here� there� flow��

�

catch �CS�XQos�Pred�Not�Avail� ex�

cerr �� �Get a QoS failed� �� endl �� ex�id����endl�

exit �����

�

catch �CORBA		SystemException� ex�

cerr �� �Get a QoS failed� �� endl �� ex�id����endl�

exit �����

�

ftime�startTime��

cout����nRESULTS FROM Quality Of Service at time	 �

��startTime��time����n���endl�

cout���This is the Bandwidth Range	�n�

��� Low Val	 ���nqos�CSQ�bwLow����n�

��� Hi Val	 ���nqos�CSQ�bwHi��endl�

cout���This is the Delay in ms	�n�

��� Low Val	 ���nqos�CSQ�delayLow����n�

��� Hi Val	 ���nqos�CSQ�delayHi��endl�

cout���This is the Error Rate	�n�

��� Low Val	 ���nqos�CSQ�errRateLow����n�

��� Hi Val	 ���nqos�CSQ�errRateHi��endl�

cout���This is the Latency in ms	�n�

��� Mean	 ���nqos�CSQ�meanLatency��endl�

cout���This is the maximum Latency in ms	�n�

��� Max	 ���nqos�CSQ�maxLatency��endl��endl��endl�

���

sleep����� ��output next set of stats in �� seconds

�

return ��

�

���

��

APPENDIX F� ADDITIONAL SIMULATION

RESULTS

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

Lo
st

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’2seconds’
’3seconds’

Figure 	�� Percentage of adaptive messages not received by deadline when using
Strategy � and �

� of messages are adaptive�

���

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

Lo
st

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’2seconds’
’3seconds’

Figure 	�� Percentage of adaptive messages not received by deadline when using
Strategy � and ����� of messages are adaptive�

���

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

Lo
st

Average Delta Bandwidth Prediction (Kbits)

’2seconds’
’3seconds’

Figure 	�� Percentage of adaptive messages not received by deadline when using
Strategy � and �

� of messages are adaptive�

��	

0

5

10

15

20

25

30

0 10 20 30 40 50

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

Lo
st

Average Delta Bandwidth Prediction (Kbits)

’2seconds’
’3seconds’

Figure 	�� Percentage of adaptive messages not received by deadline when using
Strategy �� and ����� of messages are adaptive�

���

15000

16000

17000

18000

19000

20000

21000

22000

23000

0 100 200 300 400 500 600 700

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’60seconds’

Figure 	�� Average size of successful adaptive messages using Strategy � when �

�
of the messages are adaptive and the mean interarrival time is �
 seconds�

���

3600

3800

4000

4200

4400

4600

4800

5000

5200

0 100 200 300 400 500 600 700

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’15seconds’

Figure �
� Average size of successful adaptive messages using Strategy � when �

�
of the messages are adaptive and the mean interarrival time is �� seconds�

���

300

400

500

600

700

800

900

1000

1100

1200

1300

0 100 200 300 400 500 600 700

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’2seconds’
’3seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �

�
of the messages are adaptive and the mean interarrival times are � and 	 seconds�

���

20800

21000

21200

21400

21600

21800

22000

22200

0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

’60seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �

�
of the messages are adaptive and the mean interarrival time is �
 seconds�

���

4400

4500

4600

4700

4800

4900

5000

5100

5200

0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

’15seconds’

Figure �	� Average size of successful adaptive messages using Strategy � when �

�
of the messages are adaptive and the mean interarrival time is �� seconds�

���

300

400

500

600

700

800

900

1000

1100

1200

1300

0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

’2seconds’
’3seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �

�
of the messages are adaptive and the mean interarrival times are � and 	 seconds�

�	

300000

350000

400000

450000

500000

550000

0 100 200 300 400 500 600 700

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’60seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �����
of the messages are adaptive and the mean interarrival time is �
 seconds�

�	�

55000

60000

65000

70000

75000

80000

85000

90000

95000

100000

0 100 200 300 400 500 600 700

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’15seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �����
of the messages are adaptive and the mean interarrival time is �� seconds�

�	�

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’2seconds’
’3seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �����
of the messages are adaptive and the mean interarrival times are � and 	 seconds�

�		

89000

90000

91000

92000

93000

94000

95000

96000

97000

98000

0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

’15seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �����
of the messages are adaptive and the mean interarrival time is �� seconds�

�	�

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

’2seconds’
’3seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �����
of the messages are adaptive and the mean interarrival times are � and 	 seconds�

�	�

15000

16000

17000

18000

19000

20000

21000

22000

23000

0 100 200 300 400 500 600 700

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’60seconds’

Figure �
� Average size of successful adaptive messages using Strategy � when �

�
of the messages are adaptive and the mean interarrival time is �
 seconds�

�	�

300

400

500

600

700

800

900

1000

1100

1200

1300

0 100 200 300 400 500 600 700

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’2seconds’
’3seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �

�
of the messages are adaptive and the mean interarrival times are � and 	 seconds�

�	�

20800

21000

21200

21400

21600

21800

22000

22200

0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

’60seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �

�
of the messages are adaptive and the mean interarrival time is �
 seconds�

�	�

4400

4500

4600

4700

4800

4900

5000

5100

5200

0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

’15seconds’

Figure �	� Average size of successful adaptive messages using Strategy � when �

�
of the messages are adaptive and the mean interarrival time is �� seconds�

�	�

85000

90000

95000

100000

105000

110000

115000

120000

125000

0 100 200 300 400 500 600 700

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’15seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �����
of the messages are adaptive and the mean interarrival time is �� seconds�

��

2000

4000

6000

8000

10000

12000

14000

16000

0 100 200 300 400 500 600 700

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

Communications Server

’2seconds’
’3seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �����
of the messages are adaptive and the mean interarrival times are � and 	 seconds�

���

104000

106000

108000

110000

112000

114000

116000

118000

120000

122000

124000

0 10 20 30 40 50

A
ve

ra
ge

 S
iz

e
of

 M
es

sa
ge

 R
ec

ei
ve

d(
K

B
)

Average Delta Bandwidth Prediction (Kbits)

’15seconds’

Figure ��� Average size of successful adaptive messages using Strategy � when �����
of the messages are adaptive and the mean interarrival time is �� seconds�

���

APPENDIX G� LIST OF SYMBOLS AND

FUNCTIONS

The following is a list of symbols and functions that were presented in Chapter VI�

Applicationj An application that is adaptive and can receive�send data in di
erent formats�

D A collection of data to be received�sent by an adaptive application�

TD�j A speci�c time after which the data� D� is considered late and is no longer
required by Applicationj�

Fm�D�j The di
erent formats of D that Applicationj could send�receive� The number
of formats� m� depends on the speci�c D and Applicationj�

�i Re�ects the desirability of Fi�D�j� For example� an application may accept data
in one of two di
erent formats where their normalized priorities are �� and ���
meaning that the �rst format is much preferable to the second�

Pj A priority of Applicationj that re�ects its importance and that of its user� with
respect to other applications and their users�

M�i�j�K� A function that indicates the amount of a resourceK that was used byApplicationj
to deliver part of format i�

RK The acual amount of resource K needed to deliver an entire format�

UK�T The amount of resource K that is available until deadline T �

Imode Indicates what type of environment the system is operating in� For example�
critical mode could be when resources are under heavy load� as opposed to
normal mode when there is little competition for resources�

��	

���

APPENDIX H� RESERVATION PROTOCOLS

FOR REAL�TIME DATA

Supporting Real�Time Data on the Internet

by John Kresho

for CS�	�
� Professor Geo�ery Xie

� Apr ��

�� BACKGROUND

The Joint Task Force Advanced Technology Demonstration �JTF�ATD� Ar�

chitecture is a suite of software which is being developed by DARPA� This suite of

software will aid Joint planners to electronically collaborate on a battle plan during a

crisis situation�

This suite of software contains several servers that other applications use to

integrate their functions into the JTF�ATD architecture� Some of these servers include�

� Data Server � employs a common object�oriented C� schema to provide its
clients periodically updated query�base views of distributed� heterogeneous
databases

� Web Server � provides its clients means to construct� distribute� view� edit�and
replicate node�link structures incorporating objects of arbitrary types

� Situation Server � enables its clients to develop interpretations or �pictures� of
the battle space incorporating objects� aggregates� inferences� and predictions�
all of which are indexed over space� time� and assumed context

� Plan Server � enables a group of distributed planners to hypothesize� evaluate�
and disseminate alternative courses of actions �COAs�

� Model Server � sets up and executes simulations to assess alternative plans in
the context of various assumed situations

���

� Map server � constructs and renders �maps�� which are selected subwebs �in�
cluding situations and plans�� using appropriate symbologies and geospatial
registration

� Communications Server � interacts with client applications to provide inform�
ation on the current Quality of Service �QoS� on the network

In addition to reporting the QoS on the network� the Communications Server is

designed to reserve bandwidth� However currently this portion of the Communications

Server is not implemented� With the explosion of live video and audio over the internet�

especially with the use of Video Teleconference �VTC�� it is vital for the network to

provide a guaranteed QoS� If video and audio packets are delayed� or never reach their

destination� communication is greatly a
ected�

This paper discusses the current protocols that are used to ensure timely de�

livery of real�time data over the internet� It also talks about the next step that must

be taken to guarantee a QoS for a particular application� These issues will be the next

hurdle for the Communications Server�

�� BASICS OF ENSURING TIMELY DELIVERY

If an application is the sole user on a given computer� it has the use of all

resources on that computer� It does not have to wait for other processes to be serviced�

For instance� a VTC application is compressing video to send over the network� it will

require the CPU and the network interface� The CPU immediately services these

compression requests� and the network interface will immediately service these data

packets and put them on the network�

Unfortunately� once these data packets are placed on the network� they must

compete with other data currently there� The VTC data packets must wait for their

turn to be serviced� The reader can probably relate this to sitting in a tra�c jam�

awaiting your turn to get o
 the highway�

A direct connection to each of its destinations would provide a computer with

a congestion free link� but it is unrealistic and ine�cient� �That would be like a car

���

having its own road wherever it went�� In order to provide real�time data with a high

QoS� protocols must be used to communicate an application�s requirements to the

computing resources such as the CPU� network interface and the network bandwidth�

�See Figure ���

Protocols at the transport layer communicate directly with an application�

helping it to determine its QoS demands and speed up processing of the real�time

data� However� in order to provide guarantee for this QoS� resources must be re�

served �similar to an HOV lane on the highway�� This resource reservation task is

usually performed by another set of protocols that operate at the network layer� The

following sections discuss two transport layer protocols that help applications achieve

a preferred QoS� and two network layer protocols that perform resource reservation

for a guaranteed QoS�

Need a QoS

Resources Reserved

Transport
 Layer

Network
 Layer

Figure ��� Transport and Network Layers

�� REAL�TIME TRANSPORT PROTOCOL
RTP�

The RTP protocol was introduced in January of ���� by the Audio�Video

Transport Working Group of the Internet Engineering Task Force �IETF� �Ref� ���� It

is designed to operate at the transport layer �Figure ���� RTP works with applications

to provide an end�to�end delivery service for data that has real�time characteristics�

���

RTP

UDP/TCP

T
ra

n
sp

o
rt L

a
y

er
Networking Protocol (IP)

Figure ��� RTP in the Transport Layer

RTP interacts with the data produced by applications and provides a method

of tracking these data packets at the destination� RTP encapsulates each data packet

with several additional �elds of information such as�

� Payload Type � format of the audio or video being sent

� Sequence Number � tracks the order in which the packets are produced

� Source ID � who is the originator of the packets

RTP itself does not ensure that packets arrive at the destination in order� In

fact� RTP does not ensure that packets will arrive in a timely manner at all� nor does

it attempt to reserve resources for its clients� It relies on the underlying network

protocols to provide these kind of services� RTP uses its own sequence numbering to

allow receivers to reconstruct the ordering of packets� which can speed up processing

of video packets greatly because packets do not have to be decoded in order to derive

the correct location before viewing�

RTP uses UDP to move its packets� This is due to the fact that UDP does

not provide extensive error checking� There is no reason to resend packets which

contained errors because real�time data is time sensitive� By the time the new packet

is received� it is late and not useful� However� the nature of real�time data� such as

���

video and audio� is that an application can easily interpolate missing data� UDP is

not the only protocol that RTP can use to aid in transporting its data packets� It

also can use the assistance of the Internet Stream �ST�II� protocol which works at the

network layer and will be discussed in Section ��

Next we discuss another transport protocol for real�time data� the Heidelberg

Transport System�

�� HEIDELBERG TRANSPORT SYSTEM
HEITS�

HeiTS is another transport layer protocol that helps to achieve a high QoS for

real�time data �Ref� �	�� It is currently designed to use ST�II as its network layer

protocol� HeiTS is able to adapt to environments that allow for reservations such as

FDDI and ISDN� as well as the ethernet and Token Ring environments that are best�

e
ort environments� This protocol is unique due to its ability to use Media Scaling

in order to adapt to the congestion on a network link�

a� Types of Media Scaling

There are two distinct classes of Media Scaling� The �rst is Non�Transparent

Scaling� where HeiTS communicates to the application its needs to adapt to the chan�

ging network environment� This usually acts on actual data within a particular stream�

The second is Transparent Scaling� where HeiTS acts on the media stream without

communicating with the application� Entire streams are usually manipulated in this

case�
i� Non�Transparent Scaling

When a network link becomes congested� HeiTS may communicate to

the application to tell it to reduce the amount of data being produced� In the case of

audio� an application can reduce the sampling rate at which its recording is being done�

This will reduce the size of the audio data� reducing the congestion on the network�

When video is involved� applications usually have more options to modify

the data as opposed to audio� One common approach is the reduction in frame rate�

���

Other approaches include reducing the number of pixels per image� reducing the num�

ber of colors used �i�e� gray scale�� or changing the type of encoding technique �i�e�

JPEG�MPEG� DVI��

In any case� the data is modi�ed before it gets to the transport layer�

HeiTS provides the interface between the application and the network layers in order

to control the congestion on the network link�
ii� Transparent Scaling

Transparent Scaling puts more of a burden on the transport layer pro�

tocol� HeiTS does not communicate with the application� it makes its own decisions

on when to change the �ow of data at the sender and receiver� Transparent Scaling

has two stages� Continuous and Discrete Scaling�

Referring to Figure ��� the sender has established several streams

between the sender and � receivers using the ST�II protocol �which we will discuss

in the next section�� The basic connection is the baseline QoS �� frames�sec� which

was established initially� but the available resources currently allow for �� frames�sec�

HeiTS setup � more separate streams to carry this additional service to the receivers�

Sender

Router

Receiver1 Receiver2

basic connection, 6fps

best effort, 6fps

second best effort, 6fps

Figure ��� Transparent Media Scaling

During this multicast� the network becomes congested� The receiver

�rst notices this because HeiTS can determine when packets are late by using the max

��

packet delay from the Flow Speci�cation of ST�II� When the number of late packets

reaches a certain threshold� the �rst reaction of HeiTS is to use the Continuous Scaling

technique� Since the congestion may be temporary� HeiTS does not immediately

cut tra�c down to nothing� Packets will be dropped at the receiver�s end� and the

application will not see these packets� The sender is not e
ected�

If the congestion persists� the next thing HeiTS will do is to reduce

the amount of tra�c coming from the sender� This reduction may go all the way to

zero� but the stream is still present� along with its reserved resources� At di
erent

time intervals� the sender attempts to send more data� If these attempts fail� then the

Discrete Scaling technique is used�

Discrete Scaling terminates an entire stream� so it is most e
ective on

video streams� A listener will notice a large discrepancy in service if an entire stream

of audio is deleted� In this case� HeiTS will choose the second best e
ort connection

�Figure ���� Now the receivers are getting �� frames�sec� The same process will

continue if the congestion continues� deleting all best e
ort connections if necessary�

However� HeiTS will ensure that the baseline QoS is met� and that connection will

not be terminated�

The next two sections discuss protocols which operate at the network

layer to reserve resources for the above transport protocols� The �rst is the ST�II

protocol�

�� INTERNET STREAM PROTOCOL
ST�II�

ST�II was introduced in August of ���� by the ST�II Working Group of the

IETF �Ref� ���� It operates at the network layer� and Figure �
 shows its position

relative to RTP in the protocol stack� ST�II will reserve resources from the originator

to the receiver by establishing a stream� Such reservation is necessary for the network

to guarantee a certain quality of service�QoS� for clients�

���

Networking Protocol (IP)

RTP

UDP/TCP

ST-II
T

ra
n

sp
o

rt L
a

y
er

Figure �
� ST�II with Transport Protocols

a� Establishing a Stream

Figure �� shows an example setup of an originator attempting to set a stream

up to two receivers� Initially� the originator asks for a certain QoS that will meet

his data requirements� This QoS is contained in a data structure called a Flow Spe�

ci�cation� This structure contains such things as the average expected throughput�

maximum packet size� and maximum packet delay� In our example� the originator

requires that the receivers play video at �� frames per second� which translates into

a maximum packet delay of �
ms from sender to receiver�

This �
ms packet delay� along with other QoS characteristics are placed in the

Flow Speci�cation and sent to each receiver� Following the path to receiver � �Figure

���� the Flow Speci�cation �FS in diagram� �rst reaches an intermediate router� This

router must decide whether it has the available resources �CPU time� bu
er space�

bandwidth� etc� to provide the QoS speci�ed in the FS� If it does not� it rejects the

request and sends it back to the receiver� who then can request a less demanding QoS�

Let us assume that in this example� the router has the available resources to

meet the speci�ed QoS� i�e�� the router determines that it can process and forward

the packets down the stream in ��ms� It modi�es the FS to re�ect these changes �i�e�

the max packet delay becomes �ms�� The modi�ed FS� is then forwarded down the

���

FS FS

FS

Reserve resources, modify

Flow Specification, pass it on

Decide if it can meet

the Flow Specification

Target2

Target1RouterOriginator

Router

Figure ��� Establishing a Stream for ST�II

path towards the receiver� Now the receiver decides if it has the resources to process

the packets in �ms� If not� the request is sent back� freeing up reserved resources

and leaving it up to the originator to make another request� Otherwise� the receiver

reserves the resources� and the Flow Speci�cation is then propagated back to the

originator� letting each intermediate node know that the request is accepted and to

set aside the appropriate resources�

b� Adding Participants to Existing Group

Suppose a multicast is already setup using ST�II and the streams are con�gured

as in Figure ��� The originator is sending �� frames�sec of video to the nodes on

the left hand side of the tree� Suppose that another node wishes to join the multicast�

but can only process � frames�sec� This node is shown as a dotted circle in Figure

�� � Since ST�II initiates the stream from the originator� another stream must be

established to the new node� If several other nodes wish to join below this node� the

path�s resources can be quickly exhausted�

The originator initiated stream establishment puts a limit on the number of

participants that can join the mutlicast due to its excessive use of resources� In a

��	

12fps

12fps

4fps

4fps

4fps

Figure ��� Adding a participant using ST�II

military environment� resources will be in high demand� Therefore better resource

management is a must� One such protocol that provides this criteria is the Resource

Reservation Protocol�

	� RESOURCE RESERVATION PROTOCOL
RSVP�

The latest information on RSPV was published as an Internet Draft in Nov ��

�Ref� ���� RSVP works at the same layer as ST�II does� the network layer� RSVP is

very similar to ST�II� in the fact that it reserves resources along a path and creates a

stream between the receiver and originator� However� the method of establishing the

streams in RSVP is more e�cient in its use of resources�

a� RSVP Stream Establishment

A source application using RSVP begins participation in a group by send�

ing a Path message to a receiver �Figure �	�� This Path message does two things

citeMESZ���

�� Distributes the �ow speci�cation to the receivers

�� Establishes a Path state in the intermediate nodes on its way to the receiver

���

Path Message:

-FlowSpec

-establishes path

Path Message
ReceiverRouterSource

Reservation Request (w/QoS)Reservation Request (w/QoS)

Figure �	� RSVP Stream Establishment

Note that no resource reservations have been established yet� Once a receiver

obtains the Path message� it must determine what its desired QoS will be� based on

its knowledge of its local state and information from the Path message� The receiver

then initiates a reservation request back toward the sender� using the Path that was

established previously� Each intermediate node reserves the required resources similar

to the ST�II method� then passes on the request� This message propagation stops either

when it reaches the sender� or when it encounters a node that already is participating

in the same group� Once this stream is established� data will begin to �ow with the

requested QoS�

b� Adding a Participant using RSVP

The receiver�initiated reservation allows RSVP to accommodate heterogeneous

receivers� needs� This is where RSVP has the advantage over ST�II and why it will

most likely be the protocol of choice in the near future� RSVP adapts to the changing

needs of the network by using soft states� It allows intermediate nodes to dynamic�

ally adapt to the addition or deletion of participants� e�ciently using the available

resources� The following example will further discuss this method�

Using a setup similar to the ST�II example� Figure �� shows the sender giving

a node �� frames�sec of video� Then another node wishes to join the multicast group�

but it can only process video at � frames�sec�

���

12fps

12fps

4fps

A

Figure ��� Adding a participant using RSVP

When this new node begins its reservation request back towards the sender� it

will stop at the �rst node �A� in its path� Using the soft state mechanism� this node

will dynamically adapt to this reservation request and begin to send � frames�sec of

video to the new node� The only resources that were reserved are between the new

node and node A� This is much more e�cient than ST�II�s procedure� and will most

likely give RSVP the edge in the future�

�� DISCUSSION

Discussed above are several protocols that serve as interfaces for clients to

negotiate a QoS� However� these protocols cannot guarantee a given QoS alone� We

must also consider the packet scheduling technique used at the routers between the

source and destination� If a router is using a FIFO queue to schedule packets� then real�

time data packets will not have any guaranteed performance on delays� For instance�

an RSVP agent receives RSVP data packets and hands them o
 to this FIFO packet

scheduler� It is possible that these packets with time constraints will be placed behind

a large number of packets which arrived �rst� but have no time constraints �i�e� FTP

packets��

The next step in guaranteeing a given QoS is to develop algorithms that will

���

schedule real�time data packets in a fair and e�cient manner� Currently there is a

network protocol that may help in the design of such algorithms� IPV�� It is a new

version of the Internet Protocol that contains new data �elds such as�

� Priority Field � Can instruct routers about the level of serviced required for a
packet �Time sensitive vs� non�time sensitive�

� Flow Label � Used to store information about the link to speed datagram
processing

� Routing header � Used to override default algorithms� Can direct packets over
a speci�c network link

Developers can use these �elds to produce algorithms that recognize time con�

straints on real�time data and handle the data packets appropriately�

One such scheduling algorithmwas proposed in a ���� IEEE JSAC paper �Ref�

���� It de�nes three di
erent queues that packets would be place into� The highest

priority queue is a Deterministic queue� Packets that have a strict time constraint

�i�e �
ms� are placed here� If this queue is empty� then the Probabilistic queue will

be serviced� This queue contains packets that belong to application that require only

a portion of their data to be on time� For instance� an application may only need

��� of it packets on time� The last queue may be serviced when both of the above

queues are empty� It contains packets that have no real�time characteristic� e�g� FTP

data packets� By scheduling packets in this manner� real�time packets will receive the

priority service required�

�� CONCLUSIONS

When it comes time to implement the reservation portion of the Communica�

tions Server for the JTF�ATD architecture� it will have to take in consideration the

protocols discussed above for QoS guarantees� As this paper has shown� the protocols

are in place� and a client interface will only have to be developed to use these protocols

in conjunction with the JTF�ATD suite of software�

���

RTP and HeiTS can handle network degradation with respect to real�time

data� RSVP will most likely be the predominate protocol due to its nature of handing

resources e�ciently network wide� However� guaranteeing a QoS is not all the way

there� Proper packet scheduling algorithms must be used to keep real�time data

packets moving faster than non�real�time data on the internet� Until then� there is

no total guarantee of QoS�

���

LIST OF REFERENCES

���Fredrick Hayes�Roth and Randall Ne
� Speci�cations for the JTF�ATD Reference
Architecture Servers� Version ���� Tecknowledge Federal Systems� March �����
Written for SAIC at NRaD in San Diego�

���Rick Hayes�Roth and Lee Erman� Joint Task Force Architecture Speci�cation
�JTFAS�� Tecknowledge Federal Systems� April ����� Written for SAIC at NRaD
in San Diego�

�	�N� Freed and N� Borenstein� Multipurpose Internet Mail Extensions� Part One�
Format of Internet Message Bodies� network Working Group of the Internet En�
gineering Task Force� November ����� RFC �
���

���Randall Ne
 and Rick Hayes�Roth� C	 Schema Lifecycle� Tecknowledge Federal
Systems� September ����� Written for SAIC at NRaD in San Diego�

���Randall Ne
 and Rick Hayes�Roth� JTF ATD Implementation Guidlines � V
�	�
Tecknowledge Federal Systems� January ����� Written for SAIC at NRaD in San
Diego�

���Anthony Michel� Communications server� ����� Written for BBN Systems and
Technologies�

���Robert Orfali� Dan Harkey� and Jeri Edwards� The Essential Distributed Objects
Survival Guide� John Wiley and Sons� �����

���T� Kidd� D� Hensgen� R� Freund� and L� Moore� Smartnet� A Scheduling Frame�
work for Heterogeneous Computing� Proceedings of the IEEE International Sym�
posium on Parallel Architectures� Algorithms� and Networks �I�SPAN��
�� June
�����

���Allan Terry� Terry Barnes� and Rick Hayes�Roth� JTF ATD Communications
Server� Architectual Re�nement Through Simulation Experiments� Tecknowledge
Federal Systems� September ����� Written for SAIC at NRaD in San Diego�

��
�Rick Grehan� BYTE�s new benchmarks� BYTE Magazine� March �����

����M� Litzkow� M� Livny� and M�W� Mutka� Condor � A Hunter of Idle Workstations�
Proceedings of the �th International Conference on Distributed Computing� June
�����

����Naval Command� Control� and Ocean Surveillance Center� Research� Develop�
ment� Test and Evaluation Division� Code ���� �	��
 Gatchell Road� San Diego�
CA ��������

� SmartNet Scheduling Tool v	�
 Users Guide� June �����

���

��	�H� Schulzrinne� GMD Fokus� S� Casner� R� Frederick� and V� Jacobson� RTP� A
Transport Protocol for Real�Time Applications� Audio�Video Transport Working
Group fo the Internet Engineering Task Force �RFC ������ January �����

����L� Delgrossi and L� Berger� Internet Stream Protocol Version � �ST��� ST	
Working Group of the Internet Engineering Task Force �RFC ������ August �����

����Domenico Ferrari and Dinesh Verma� A Scheme for Real�Time Channel Estab�
lishment in Wide�Area Networks� IEEE Journal on Selected Areas in Communic�
ations� �����

����Ed R� Braden� L� Zhang� S� Berson� S� Herzog� and S� Jamin� Resource Reservation
Protocol �RSVP� � Version � Functional Speci�cation� Internet Engineering Task
Force� October �����

����Rikk Carey� Chris Marrin� and Gavin Bell� The Virtual Reality Modeling Lan�
guage �VRML� Version ��
 Speci�cation� International Standards Organiza�
tion�International Electrotechnical Commission �ISO�IEC� draft standard ����	�
August �����

����Calton Pu� Andrew Black� Crispin Cowan� and Jonathan Walpole� Microlanguages
for operating system specialization� SIGPLAN Workshop on Domain�Speci�c Lan�
guages� January �����

����Athanasios Papoulis� Probability� Random Variables� and Stochastic Processes�
	nd� Ed� McGraw�Hill� New York� �����

��
�Naval Command� Control� and Ocean Surveillance Center� Code ���� SmartNet
Scheduling Tool� v	�
� Users Guide� June �����

����Taylor Kidd� Debra Hensgen� Richard Freund� Matt Kussow� and Mark Campbell�
Compute characteristics� A useful characterization of job runtimes� In preparation
for submission �������

����H� Schulzrinne� GMD Fokus� Casner S� R� Frederick� and V� Jacobson� RTP� A
Transport Protocol for Real�Time Applications� Audio�Video Transport Working
Group of the Internet Engineering Task Force� January ����� RFC �����

��	�Luca Delgrossi� Christian Halstrick� Dietmar Hehmann� Ralf Guido Herrtwich�
Oliver Krone� Jochen Sandvoss� and Carsten Vogt� Media Scaling for Audiovisual
Communication with the Heidelberg Transport System� In Proceedings of ACM
Multimedia ��
� pages ��"�
�� Anaheim� CA� August ���	�

����L� Delgrossi and L� Berger� Internet Stream Protocol Version 	 �ST	�� ST�
Working Group of the Internet Engineering Task Force� August ����� RFC �����

��

����Ed� R� Braden� L� Zhang� S� Berson� S� Herzog� and S� Jamin� Resource Reserva�
tion Protocol �RSVP� � Version � Functional Speci�cation� Internet Engineering
Task Force� October ����� Internet Draft�

����Domenico Ferrari and Dinesh Verma� A Scheme for Real�Time Channel Estab�
lishment in Wide�Area Networks� IEEE Journal on Selected Areas in Communic�
ations� �����

���

���

INITIAL DISTRIBUTION LIST

��Defense Technical Information Center
���� John J� Kingman Road�� Ste
���
Ft� Belvoir� VA ��
�
�����

�

��Dudley Knox Library
Naval Postgraduate School
��� Dyer Rd�
Monterey� CA �	��	���
�

�

	�Director� Training and Education
MCCDC� Code C��
�
�� Elliot Road
Quantico� VA ���	���
��

�

��Director� Marine Corps Research Center
MCCDC� Code C�
RC
�
�
 Broadway Street
Quantico� VA ���	����
�

�

��Director� Studies and Analysis Division
MCCDC� Code C��
		

 Russell Road
Quantico� VA ���	����	

�

��Marine Corps Representative
Naval Postgraduate School
Code
	�� Bldg� �	�� HA���

��� Dyer Road
Monterey� CA �	��

�

��Marine Corps Tactical Systems Support Activity
Technical Advisory Branch
Attn� Maj J�C� Cummiskey
Box ������
Camp Pendelton� CA ��
����
�

�

��Debra Hensgen
Naval Postgraduate School
Code CS�Hd� Computer Sciences Dept�
�		 Dyer Rd�
Monterey� CA �	��	�����

�

��	

��Geo
rey Xie
Naval Postgraduate School
Code CS�Xi� Computer Sciences Dept�
�		 Dyer Rd�
Monterey� CA �	��	�����

�

�
�John Falby
Naval Postgraduate School
Code CS�Fa� Computer Sciences Dept�
�		 Dyer Rd�
Monterey� CA �	��	�����

�

���H�J� Siegel
Purdue University
Room 	��� EE Building
School of Electrical and Computer Engineering
���� Electrical Engineer Building
West Lafayette� IN ���
������

�

���Richard Freund� Chief Scientist
Heterogeneous Computing Team
NCCOSC RDTE Div ���� Rm 	��A
�	��� Gatchell Road
San Diego� CA ����������

�

�	�Taylor Kidd
Naval Postgraduate School
Code CS�Kt� Computer Sciences Dept�
�		 Dyer Rd�
Monterey� CA �	��	�����

�

���Viktor Prasanna
University of Southern California
Department of EE�Systems� EEB �

C
	��
 McClintock Ave�
Los Angeles� CA �

�������

�

���John Kresho
��� Kerr Rd
New Kensington� PA ��
��

�

���

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

